Loading…
Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description
Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for indu...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.6282-6294 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763 |
container_end_page | 6294 |
container_issue | |
container_start_page | 6282 |
container_title | IEEE access |
container_volume | 8 |
creator | Li, Fengming Jiang, Qi Quan, Wei Cai, Shibo Song, Rui Li, Yibin |
description | Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for industrial-grade assembly robots. This study proposes a skill acquisition method based on multi-modal information description to realize the assembly of systems with elastic components. This multi-modal information includes two-dimensional images, poses, forces/torques, and robot joint parameters. In this method, robots acquire searching, location determination, and pose adjustment skills using these multi-modal information parameters. As a result, robots can reach the assembly target by analyzing two-dimensional images with no position constraint. While acquiring pose adjustment skills, the reward function with depth and assembly steps is used to improve the learning efficiency. The deep deterministic policy gradient (DDPG) algorithm is applied for acquiring skills. Experiments using a KUKA iiwa robot demonstrated the effectiveness and conciseness of our method. Our results indicate that the robot acquired searching, location determination, and pose adjustment skills that allowed it to successfully complete elastic assembly. |
doi_str_mv | 10.1109/ACCESS.2019.2934174 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_69545b42047a4c7bac4ac47463488bc0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8793056</ieee_id><doaj_id>oai_doaj_org_article_69545b42047a4c7bac4ac47463488bc0</doaj_id><sourcerecordid>2454879333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaKgVH-BlwXPW_MxyWaPtX4VLILVc0yyWUndNjXZPfTfm7oiDoEZ3sx7k-EhdEnwlBBcX8_m87vVakoxqae0ZkAqOEJnlIi6ZJyJ43_1KbpIaY1zyAzx6gy9L_XW74ZO9z5si9Wn77piZr8Gn_wP0oZYvAQTem-LWUpuY7p9caOTa4rcXQ5d78tlaHRXLLZ5djPq3Lpko98d6nN00uouuYvfPEFv93ev88fy6flhMZ89lRaw7EvKgWlwFWjOW1mLGhMQ0jQMMOW2sdQyoZ0zuJWMakYIq4VhBDtrGikrwSZoMeo2Qa_VLvqNjnsVtFc_QIgfSsd8RedUvhy4AYqh0mAroy3kV4FgIKWxOGtdjVq7GL4Gl3q1DkPc5u8rChxkVbMcE8TGKRtDStG1f1sJVgdn1OiMOjijfp3JrMuR5Z1zf4yDJOaCfQPffYki</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454879333</pqid></control><display><type>article</type><title>Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description</title><source>IEEE Open Access Journals</source><creator>Li, Fengming ; Jiang, Qi ; Quan, Wei ; Cai, Shibo ; Song, Rui ; Li, Yibin</creator><creatorcontrib>Li, Fengming ; Jiang, Qi ; Quan, Wei ; Cai, Shibo ; Song, Rui ; Li, Yibin</creatorcontrib><description>Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for industrial-grade assembly robots. This study proposes a skill acquisition method based on multi-modal information description to realize the assembly of systems with elastic components. This multi-modal information includes two-dimensional images, poses, forces/torques, and robot joint parameters. In this method, robots acquire searching, location determination, and pose adjustment skills using these multi-modal information parameters. As a result, robots can reach the assembly target by analyzing two-dimensional images with no position constraint. While acquiring pose adjustment skills, the reward function with depth and assembly steps is used to improve the learning efficiency. The deep deterministic policy gradient (DDPG) algorithm is applied for acquiring skills. Experiments using a KUKA iiwa robot demonstrated the effectiveness and conciseness of our method. Our results indicate that the robot acquired searching, location determination, and pose adjustment skills that allowed it to successfully complete elastic assembly.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2934174</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>acquisition of manipulation skills ; Algorithms ; Assembly ; deep reinforcement learning ; Elastic deformation ; Industrial robots ; Machine learning ; multi-modal information description ; Parameters ; Reinforcement learning ; Robot kinematics ; Robotic assembly ; Robots ; Searching ; Service robots ; Skills ; Strain ; Target recognition ; Task analysis ; Two dimensional analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.6282-6294</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763</citedby><cites>FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763</cites><orcidid>0000-0002-8075-0930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8793056$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Fengming</creatorcontrib><creatorcontrib>Jiang, Qi</creatorcontrib><creatorcontrib>Quan, Wei</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Li, Yibin</creatorcontrib><title>Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description</title><title>IEEE access</title><addtitle>Access</addtitle><description>Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for industrial-grade assembly robots. This study proposes a skill acquisition method based on multi-modal information description to realize the assembly of systems with elastic components. This multi-modal information includes two-dimensional images, poses, forces/torques, and robot joint parameters. In this method, robots acquire searching, location determination, and pose adjustment skills using these multi-modal information parameters. As a result, robots can reach the assembly target by analyzing two-dimensional images with no position constraint. While acquiring pose adjustment skills, the reward function with depth and assembly steps is used to improve the learning efficiency. The deep deterministic policy gradient (DDPG) algorithm is applied for acquiring skills. Experiments using a KUKA iiwa robot demonstrated the effectiveness and conciseness of our method. Our results indicate that the robot acquired searching, location determination, and pose adjustment skills that allowed it to successfully complete elastic assembly.</description><subject>acquisition of manipulation skills</subject><subject>Algorithms</subject><subject>Assembly</subject><subject>deep reinforcement learning</subject><subject>Elastic deformation</subject><subject>Industrial robots</subject><subject>Machine learning</subject><subject>multi-modal information description</subject><subject>Parameters</subject><subject>Reinforcement learning</subject><subject>Robot kinematics</subject><subject>Robotic assembly</subject><subject>Robots</subject><subject>Searching</subject><subject>Service robots</subject><subject>Skills</subject><subject>Strain</subject><subject>Target recognition</subject><subject>Task analysis</subject><subject>Two dimensional analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaKgVH-BlwXPW_MxyWaPtX4VLILVc0yyWUndNjXZPfTfm7oiDoEZ3sx7k-EhdEnwlBBcX8_m87vVakoxqae0ZkAqOEJnlIi6ZJyJ43_1KbpIaY1zyAzx6gy9L_XW74ZO9z5si9Wn77piZr8Gn_wP0oZYvAQTem-LWUpuY7p9caOTa4rcXQ5d78tlaHRXLLZ5djPq3Lpko98d6nN00uouuYvfPEFv93ev88fy6flhMZ89lRaw7EvKgWlwFWjOW1mLGhMQ0jQMMOW2sdQyoZ0zuJWMakYIq4VhBDtrGikrwSZoMeo2Qa_VLvqNjnsVtFc_QIgfSsd8RedUvhy4AYqh0mAroy3kV4FgIKWxOGtdjVq7GL4Gl3q1DkPc5u8rChxkVbMcE8TGKRtDStG1f1sJVgdn1OiMOjijfp3JrMuR5Z1zf4yDJOaCfQPffYki</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Fengming</creator><creator>Jiang, Qi</creator><creator>Quan, Wei</creator><creator>Cai, Shibo</creator><creator>Song, Rui</creator><creator>Li, Yibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8075-0930</orcidid></search><sort><creationdate>2020</creationdate><title>Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description</title><author>Li, Fengming ; Jiang, Qi ; Quan, Wei ; Cai, Shibo ; Song, Rui ; Li, Yibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acquisition of manipulation skills</topic><topic>Algorithms</topic><topic>Assembly</topic><topic>deep reinforcement learning</topic><topic>Elastic deformation</topic><topic>Industrial robots</topic><topic>Machine learning</topic><topic>multi-modal information description</topic><topic>Parameters</topic><topic>Reinforcement learning</topic><topic>Robot kinematics</topic><topic>Robotic assembly</topic><topic>Robots</topic><topic>Searching</topic><topic>Service robots</topic><topic>Skills</topic><topic>Strain</topic><topic>Target recognition</topic><topic>Task analysis</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fengming</creatorcontrib><creatorcontrib>Jiang, Qi</creatorcontrib><creatorcontrib>Quan, Wei</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Li, Yibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fengming</au><au>Jiang, Qi</au><au>Quan, Wei</au><au>Cai, Shibo</au><au>Song, Rui</au><au>Li, Yibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>6282</spage><epage>6294</epage><pages>6282-6294</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for industrial-grade assembly robots. This study proposes a skill acquisition method based on multi-modal information description to realize the assembly of systems with elastic components. This multi-modal information includes two-dimensional images, poses, forces/torques, and robot joint parameters. In this method, robots acquire searching, location determination, and pose adjustment skills using these multi-modal information parameters. As a result, robots can reach the assembly target by analyzing two-dimensional images with no position constraint. While acquiring pose adjustment skills, the reward function with depth and assembly steps is used to improve the learning efficiency. The deep deterministic policy gradient (DDPG) algorithm is applied for acquiring skills. Experiments using a KUKA iiwa robot demonstrated the effectiveness and conciseness of our method. Our results indicate that the robot acquired searching, location determination, and pose adjustment skills that allowed it to successfully complete elastic assembly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2934174</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8075-0930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.6282-6294 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_69545b42047a4c7bac4ac47463488bc0 |
source | IEEE Open Access Journals |
subjects | acquisition of manipulation skills Algorithms Assembly deep reinforcement learning Elastic deformation Industrial robots Machine learning multi-modal information description Parameters Reinforcement learning Robot kinematics Robotic assembly Robots Searching Service robots Skills Strain Target recognition Task analysis Two dimensional analysis |
title | Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulation%20Skill%20Acquisition%20for%20Robotic%20Assembly%20Based%20on%20Multi-Modal%20Information%20Description&rft.jtitle=IEEE%20access&rft.au=Li,%20Fengming&rft.date=2020&rft.volume=8&rft.spage=6282&rft.epage=6294&rft.pages=6282-6294&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2934174&rft_dat=%3Cproquest_doaj_%3E2454879333%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454879333&rft_id=info:pmid/&rft_ieee_id=8793056&rfr_iscdi=true |