Loading…

Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description

Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for indu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.6282-6294
Main Authors: Li, Fengming, Jiang, Qi, Quan, Wei, Cai, Shibo, Song, Rui, Li, Yibin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763
cites cdi_FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763
container_end_page 6294
container_issue
container_start_page 6282
container_title IEEE access
container_volume 8
creator Li, Fengming
Jiang, Qi
Quan, Wei
Cai, Shibo
Song, Rui
Li, Yibin
description Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for industrial-grade assembly robots. This study proposes a skill acquisition method based on multi-modal information description to realize the assembly of systems with elastic components. This multi-modal information includes two-dimensional images, poses, forces/torques, and robot joint parameters. In this method, robots acquire searching, location determination, and pose adjustment skills using these multi-modal information parameters. As a result, robots can reach the assembly target by analyzing two-dimensional images with no position constraint. While acquiring pose adjustment skills, the reward function with depth and assembly steps is used to improve the learning efficiency. The deep deterministic policy gradient (DDPG) algorithm is applied for acquiring skills. Experiments using a KUKA iiwa robot demonstrated the effectiveness and conciseness of our method. Our results indicate that the robot acquired searching, location determination, and pose adjustment skills that allowed it to successfully complete elastic assembly.
doi_str_mv 10.1109/ACCESS.2019.2934174
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_69545b42047a4c7bac4ac47463488bc0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8793056</ieee_id><doaj_id>oai_doaj_org_article_69545b42047a4c7bac4ac47463488bc0</doaj_id><sourcerecordid>2454879333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaKgVH-BlwXPW_MxyWaPtX4VLILVc0yyWUndNjXZPfTfm7oiDoEZ3sx7k-EhdEnwlBBcX8_m87vVakoxqae0ZkAqOEJnlIi6ZJyJ43_1KbpIaY1zyAzx6gy9L_XW74ZO9z5si9Wn77piZr8Gn_wP0oZYvAQTem-LWUpuY7p9caOTa4rcXQ5d78tlaHRXLLZ5djPq3Lpko98d6nN00uouuYvfPEFv93ev88fy6flhMZ89lRaw7EvKgWlwFWjOW1mLGhMQ0jQMMOW2sdQyoZ0zuJWMakYIq4VhBDtrGikrwSZoMeo2Qa_VLvqNjnsVtFc_QIgfSsd8RedUvhy4AYqh0mAroy3kV4FgIKWxOGtdjVq7GL4Gl3q1DkPc5u8rChxkVbMcE8TGKRtDStG1f1sJVgdn1OiMOjijfp3JrMuR5Z1zf4yDJOaCfQPffYki</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454879333</pqid></control><display><type>article</type><title>Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description</title><source>IEEE Open Access Journals</source><creator>Li, Fengming ; Jiang, Qi ; Quan, Wei ; Cai, Shibo ; Song, Rui ; Li, Yibin</creator><creatorcontrib>Li, Fengming ; Jiang, Qi ; Quan, Wei ; Cai, Shibo ; Song, Rui ; Li, Yibin</creatorcontrib><description>Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for industrial-grade assembly robots. This study proposes a skill acquisition method based on multi-modal information description to realize the assembly of systems with elastic components. This multi-modal information includes two-dimensional images, poses, forces/torques, and robot joint parameters. In this method, robots acquire searching, location determination, and pose adjustment skills using these multi-modal information parameters. As a result, robots can reach the assembly target by analyzing two-dimensional images with no position constraint. While acquiring pose adjustment skills, the reward function with depth and assembly steps is used to improve the learning efficiency. The deep deterministic policy gradient (DDPG) algorithm is applied for acquiring skills. Experiments using a KUKA iiwa robot demonstrated the effectiveness and conciseness of our method. Our results indicate that the robot acquired searching, location determination, and pose adjustment skills that allowed it to successfully complete elastic assembly.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2934174</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>acquisition of manipulation skills ; Algorithms ; Assembly ; deep reinforcement learning ; Elastic deformation ; Industrial robots ; Machine learning ; multi-modal information description ; Parameters ; Reinforcement learning ; Robot kinematics ; Robotic assembly ; Robots ; Searching ; Service robots ; Skills ; Strain ; Target recognition ; Task analysis ; Two dimensional analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.6282-6294</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763</citedby><cites>FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763</cites><orcidid>0000-0002-8075-0930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8793056$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Fengming</creatorcontrib><creatorcontrib>Jiang, Qi</creatorcontrib><creatorcontrib>Quan, Wei</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Li, Yibin</creatorcontrib><title>Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description</title><title>IEEE access</title><addtitle>Access</addtitle><description>Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for industrial-grade assembly robots. This study proposes a skill acquisition method based on multi-modal information description to realize the assembly of systems with elastic components. This multi-modal information includes two-dimensional images, poses, forces/torques, and robot joint parameters. In this method, robots acquire searching, location determination, and pose adjustment skills using these multi-modal information parameters. As a result, robots can reach the assembly target by analyzing two-dimensional images with no position constraint. While acquiring pose adjustment skills, the reward function with depth and assembly steps is used to improve the learning efficiency. The deep deterministic policy gradient (DDPG) algorithm is applied for acquiring skills. Experiments using a KUKA iiwa robot demonstrated the effectiveness and conciseness of our method. Our results indicate that the robot acquired searching, location determination, and pose adjustment skills that allowed it to successfully complete elastic assembly.</description><subject>acquisition of manipulation skills</subject><subject>Algorithms</subject><subject>Assembly</subject><subject>deep reinforcement learning</subject><subject>Elastic deformation</subject><subject>Industrial robots</subject><subject>Machine learning</subject><subject>multi-modal information description</subject><subject>Parameters</subject><subject>Reinforcement learning</subject><subject>Robot kinematics</subject><subject>Robotic assembly</subject><subject>Robots</subject><subject>Searching</subject><subject>Service robots</subject><subject>Skills</subject><subject>Strain</subject><subject>Target recognition</subject><subject>Task analysis</subject><subject>Two dimensional analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaKgVH-BlwXPW_MxyWaPtX4VLILVc0yyWUndNjXZPfTfm7oiDoEZ3sx7k-EhdEnwlBBcX8_m87vVakoxqae0ZkAqOEJnlIi6ZJyJ43_1KbpIaY1zyAzx6gy9L_XW74ZO9z5si9Wn77piZr8Gn_wP0oZYvAQTem-LWUpuY7p9caOTa4rcXQ5d78tlaHRXLLZ5djPq3Lpko98d6nN00uouuYvfPEFv93ev88fy6flhMZ89lRaw7EvKgWlwFWjOW1mLGhMQ0jQMMOW2sdQyoZ0zuJWMakYIq4VhBDtrGikrwSZoMeo2Qa_VLvqNjnsVtFc_QIgfSsd8RedUvhy4AYqh0mAroy3kV4FgIKWxOGtdjVq7GL4Gl3q1DkPc5u8rChxkVbMcE8TGKRtDStG1f1sJVgdn1OiMOjijfp3JrMuR5Z1zf4yDJOaCfQPffYki</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Fengming</creator><creator>Jiang, Qi</creator><creator>Quan, Wei</creator><creator>Cai, Shibo</creator><creator>Song, Rui</creator><creator>Li, Yibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8075-0930</orcidid></search><sort><creationdate>2020</creationdate><title>Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description</title><author>Li, Fengming ; Jiang, Qi ; Quan, Wei ; Cai, Shibo ; Song, Rui ; Li, Yibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acquisition of manipulation skills</topic><topic>Algorithms</topic><topic>Assembly</topic><topic>deep reinforcement learning</topic><topic>Elastic deformation</topic><topic>Industrial robots</topic><topic>Machine learning</topic><topic>multi-modal information description</topic><topic>Parameters</topic><topic>Reinforcement learning</topic><topic>Robot kinematics</topic><topic>Robotic assembly</topic><topic>Robots</topic><topic>Searching</topic><topic>Service robots</topic><topic>Skills</topic><topic>Strain</topic><topic>Target recognition</topic><topic>Task analysis</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fengming</creatorcontrib><creatorcontrib>Jiang, Qi</creatorcontrib><creatorcontrib>Quan, Wei</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Li, Yibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fengming</au><au>Jiang, Qi</au><au>Quan, Wei</au><au>Cai, Shibo</au><au>Song, Rui</au><au>Li, Yibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>6282</spage><epage>6294</epage><pages>6282-6294</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Automatic assembly of elastic components is difficult because of the potential deformation of parts during the assembly process. Consequently, robots cannot adapt their manipulation to dynamic changes. Designing systems that learn assembly skills can help in alleviating the uncertain factor for industrial-grade assembly robots. This study proposes a skill acquisition method based on multi-modal information description to realize the assembly of systems with elastic components. This multi-modal information includes two-dimensional images, poses, forces/torques, and robot joint parameters. In this method, robots acquire searching, location determination, and pose adjustment skills using these multi-modal information parameters. As a result, robots can reach the assembly target by analyzing two-dimensional images with no position constraint. While acquiring pose adjustment skills, the reward function with depth and assembly steps is used to improve the learning efficiency. The deep deterministic policy gradient (DDPG) algorithm is applied for acquiring skills. Experiments using a KUKA iiwa robot demonstrated the effectiveness and conciseness of our method. Our results indicate that the robot acquired searching, location determination, and pose adjustment skills that allowed it to successfully complete elastic assembly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2934174</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8075-0930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.6282-6294
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_69545b42047a4c7bac4ac47463488bc0
source IEEE Open Access Journals
subjects acquisition of manipulation skills
Algorithms
Assembly
deep reinforcement learning
Elastic deformation
Industrial robots
Machine learning
multi-modal information description
Parameters
Reinforcement learning
Robot kinematics
Robotic assembly
Robots
Searching
Service robots
Skills
Strain
Target recognition
Task analysis
Two dimensional analysis
title Manipulation Skill Acquisition for Robotic Assembly Based on Multi-Modal Information Description
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulation%20Skill%20Acquisition%20for%20Robotic%20Assembly%20Based%20on%20Multi-Modal%20Information%20Description&rft.jtitle=IEEE%20access&rft.au=Li,%20Fengming&rft.date=2020&rft.volume=8&rft.spage=6282&rft.epage=6294&rft.pages=6282-6294&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2934174&rft_dat=%3Cproquest_doaj_%3E2454879333%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-2543a4e74a55f896901468bd34025cdc2c36aeeb0f832a311396b310ecbd88763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454879333&rft_id=info:pmid/&rft_ieee_id=8793056&rfr_iscdi=true