Loading…
Impact and Technical Solutions of Hydrodynamic and Thermodynamic Processes in Liquefied Natural Gas Regasification Process
Transporting natural gas in liquid form increases opportunities for storage and export worldwide, thus making transportation more sustainable. However, liquefied natural gas (LNG) is in an unsteady state, leading to LNG conversion to the gas state occurring throughout the storage, loading, unloading...
Saved in:
Published in: | Journal of marine science and engineering 2024-07, Vol.12 (7), p.1164 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transporting natural gas in liquid form increases opportunities for storage and export worldwide, thus making transportation more sustainable. However, liquefied natural gas (LNG) is in an unsteady state, leading to LNG conversion to the gas state occurring throughout the storage, loading, unloading, and transportation processes. To observe the transition of LNG to natural gas, mathematical models are developed to monitor technical parameters. This research analyses a floating storage and regasification unit for and adopts a mathematical model of the LNG regasification system, aiming for improved observation of hydrodynamic, dynamic, and thermo-physical properties. The complex mathematical model of the system was implemented using the Fortran programming language and MATLAB R28a. From the investigation of the total LNG regasification system, it could be concluded that increasing the outlet pressure of the system results in a decrease in the velocity of LNG. It was found that the total hydraulic energy losses of the total LNG regasification system were approximately 41.3 kW (with outlet pressure of 2 MPa), 12.75 kW (with outlet pressure of 5 MPa), and 4.24 kW (with outlet pressure of 7 MPa). |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse12071164 |