Loading…
Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water
In the quest for renewable fuel production, the selective conversion of CO 2 to CH 4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineer...
Saved in:
Published in: | Nature communications 2023-07, Vol.14 (1), p.4508-4508, Article 4508 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193 |
container_end_page | 4508 |
container_issue | 1 |
container_start_page | 4508 |
container_title | Nature communications |
container_volume | 14 |
creator | Karmakar, Sanchita Barman, Soumitra Rahimi, Faruk Ahamed Rambabu, Darsi Nath, Sukhendu Maji, Tapas Kumar |
description | In the quest for renewable fuel production, the selective conversion of CO
2
to CH
4
under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO
2
reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH
4
from CO
2
. The reported material produces 7.3 mmol g
−1
of CH
4
under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.
Maji and coworkers report the selective conversion of CO
2
to CH
4
under visible light by utilizing a charge transfer complex within Zr-MOF-808 pores. The complex ultimately facilitates efficient multielectron reduction at the Zr-catalytic center. |
doi_str_mv | 10.1038/s41467-023-40117-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_697550ca24594fefae53858ea158ca64</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_697550ca24594fefae53858ea158ca64</doaj_id><sourcerecordid>2843035709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhaOKqq1KX6CrSGzYpPg3jlcIjYBWqtQNrK0bz3UmQ2IPdkJpnx6nqYCywBtbvud8PrZvUVxSckUJb94lQUWtKsJ4JQilqno8Ks4YEbSiivFXf61Pi4uU9iQPrmkjxElxypXQUipxVuw2wbve974r7Q5ih9UUwSeHsbRhPAz4s-x9CeWIEwxViB343pYuwoj3IX4rXYjlYRemYCELHqZc3NyxMuJ2tlMf_OK-hwnj6-LYwZDw4nk-L75--vhlc13d3n2-2Xy4raykzVS1quWU6hakY7ThKJhsOSLVljCmeC21E0KLrWqV41DXCASwVlpRpFZRzc-Lm5W7DbA3h9iPEB9MgN48beQbGIg55oCm1kpKYoEJqYVDByh5IxsEKhsLtcis9yvrMLcjbi36_DjDC-jLiu93pgs_TP6hnEXXmfD2mRDD9xnTZMY-WRwG8BjmZFgjOOFSkSX4m3-k-zBHn99qUTFOFJNLJLaqbAwpRXS_01CyHNuYtTFMbgzz1BjmMZv4akpZ7DuMf9D_cf0Cc0K6aA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842307254</pqid></control><display><type>article</type><title>Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Karmakar, Sanchita ; Barman, Soumitra ; Rahimi, Faruk Ahamed ; Rambabu, Darsi ; Nath, Sukhendu ; Maji, Tapas Kumar</creator><creatorcontrib>Karmakar, Sanchita ; Barman, Soumitra ; Rahimi, Faruk Ahamed ; Rambabu, Darsi ; Nath, Sukhendu ; Maji, Tapas Kumar</creatorcontrib><description>In the quest for renewable fuel production, the selective conversion of CO
2
to CH
4
under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO
2
reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH
4
from CO
2
. The reported material produces 7.3 mmol g
−1
of CH
4
under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.
Maji and coworkers report the selective conversion of CO
2
to CH
4
under visible light by utilizing a charge transfer complex within Zr-MOF-808 pores. The complex ultimately facilitates efficient multielectron reduction at the Zr-catalytic center.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40117-z</identifier><identifier>PMID: 37495574</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/131 ; 147/135 ; 147/143 ; 639/638/298/921 ; 639/638/440/947 ; 639/638/77/887 ; 639/638/77/890 ; Absorption spectroscopy ; Aqueous solutions ; Carbon dioxide ; Charge transfer ; Chemical reduction ; Confined spaces ; Conversion ; Density functional theory ; Electron paramagnetic resonance ; Electron spin resonance ; Electron transfer ; Energy consumption ; Fuel production ; Humanities and Social Sciences ; Irradiation ; Kinetics ; Light ; Light irradiation ; Metal-organic frameworks ; Methane ; Methyl viologen ; Morphology ; multidisciplinary ; Photocatalysis ; Pore size ; Renewable fuels ; Science ; Science (multidisciplinary) ; Zirconium</subject><ispartof>Nature communications, 2023-07, Vol.14 (1), p.4508-4508, Article 4508</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193</citedby><cites>FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193</cites><orcidid>0000-0001-9976-7719 ; 0000-0002-7700-1146 ; 0000-0002-8193-2816 ; 0000-0003-2716-0912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2842307254/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2842307254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Karmakar, Sanchita</creatorcontrib><creatorcontrib>Barman, Soumitra</creatorcontrib><creatorcontrib>Rahimi, Faruk Ahamed</creatorcontrib><creatorcontrib>Rambabu, Darsi</creatorcontrib><creatorcontrib>Nath, Sukhendu</creatorcontrib><creatorcontrib>Maji, Tapas Kumar</creatorcontrib><title>Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>In the quest for renewable fuel production, the selective conversion of CO
2
to CH
4
under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO
2
reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH
4
from CO
2
. The reported material produces 7.3 mmol g
−1
of CH
4
under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.
Maji and coworkers report the selective conversion of CO
2
to CH
4
under visible light by utilizing a charge transfer complex within Zr-MOF-808 pores. The complex ultimately facilitates efficient multielectron reduction at the Zr-catalytic center.</description><subject>119/118</subject><subject>140/131</subject><subject>147/135</subject><subject>147/143</subject><subject>639/638/298/921</subject><subject>639/638/440/947</subject><subject>639/638/77/887</subject><subject>639/638/77/890</subject><subject>Absorption spectroscopy</subject><subject>Aqueous solutions</subject><subject>Carbon dioxide</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Confined spaces</subject><subject>Conversion</subject><subject>Density functional theory</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Electron transfer</subject><subject>Energy consumption</subject><subject>Fuel production</subject><subject>Humanities and Social Sciences</subject><subject>Irradiation</subject><subject>Kinetics</subject><subject>Light</subject><subject>Light irradiation</subject><subject>Metal-organic frameworks</subject><subject>Methane</subject><subject>Methyl viologen</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Photocatalysis</subject><subject>Pore size</subject><subject>Renewable fuels</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Zirconium</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhaOKqq1KX6CrSGzYpPg3jlcIjYBWqtQNrK0bz3UmQ2IPdkJpnx6nqYCywBtbvud8PrZvUVxSckUJb94lQUWtKsJ4JQilqno8Ks4YEbSiivFXf61Pi4uU9iQPrmkjxElxypXQUipxVuw2wbve974r7Q5ih9UUwSeHsbRhPAz4s-x9CeWIEwxViB343pYuwoj3IX4rXYjlYRemYCELHqZc3NyxMuJ2tlMf_OK-hwnj6-LYwZDw4nk-L75--vhlc13d3n2-2Xy4raykzVS1quWU6hakY7ThKJhsOSLVljCmeC21E0KLrWqV41DXCASwVlpRpFZRzc-Lm5W7DbA3h9iPEB9MgN48beQbGIg55oCm1kpKYoEJqYVDByh5IxsEKhsLtcis9yvrMLcjbi36_DjDC-jLiu93pgs_TP6hnEXXmfD2mRDD9xnTZMY-WRwG8BjmZFgjOOFSkSX4m3-k-zBHn99qUTFOFJNLJLaqbAwpRXS_01CyHNuYtTFMbgzz1BjmMZv4akpZ7DuMf9D_cf0Cc0K6aA</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Karmakar, Sanchita</creator><creator>Barman, Soumitra</creator><creator>Rahimi, Faruk Ahamed</creator><creator>Rambabu, Darsi</creator><creator>Nath, Sukhendu</creator><creator>Maji, Tapas Kumar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9976-7719</orcidid><orcidid>https://orcid.org/0000-0002-7700-1146</orcidid><orcidid>https://orcid.org/0000-0002-8193-2816</orcidid><orcidid>https://orcid.org/0000-0003-2716-0912</orcidid></search><sort><creationdate>20230726</creationdate><title>Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water</title><author>Karmakar, Sanchita ; Barman, Soumitra ; Rahimi, Faruk Ahamed ; Rambabu, Darsi ; Nath, Sukhendu ; Maji, Tapas Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>119/118</topic><topic>140/131</topic><topic>147/135</topic><topic>147/143</topic><topic>639/638/298/921</topic><topic>639/638/440/947</topic><topic>639/638/77/887</topic><topic>639/638/77/890</topic><topic>Absorption spectroscopy</topic><topic>Aqueous solutions</topic><topic>Carbon dioxide</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Confined spaces</topic><topic>Conversion</topic><topic>Density functional theory</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Electron transfer</topic><topic>Energy consumption</topic><topic>Fuel production</topic><topic>Humanities and Social Sciences</topic><topic>Irradiation</topic><topic>Kinetics</topic><topic>Light</topic><topic>Light irradiation</topic><topic>Metal-organic frameworks</topic><topic>Methane</topic><topic>Methyl viologen</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Photocatalysis</topic><topic>Pore size</topic><topic>Renewable fuels</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karmakar, Sanchita</creatorcontrib><creatorcontrib>Barman, Soumitra</creatorcontrib><creatorcontrib>Rahimi, Faruk Ahamed</creatorcontrib><creatorcontrib>Rambabu, Darsi</creatorcontrib><creatorcontrib>Nath, Sukhendu</creatorcontrib><creatorcontrib>Maji, Tapas Kumar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karmakar, Sanchita</au><au>Barman, Soumitra</au><au>Rahimi, Faruk Ahamed</au><au>Rambabu, Darsi</au><au>Nath, Sukhendu</au><au>Maji, Tapas Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-07-26</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4508</spage><epage>4508</epage><pages>4508-4508</pages><artnum>4508</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>In the quest for renewable fuel production, the selective conversion of CO
2
to CH
4
under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO
2
reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH
4
from CO
2
. The reported material produces 7.3 mmol g
−1
of CH
4
under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.
Maji and coworkers report the selective conversion of CO
2
to CH
4
under visible light by utilizing a charge transfer complex within Zr-MOF-808 pores. The complex ultimately facilitates efficient multielectron reduction at the Zr-catalytic center.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37495574</pmid><doi>10.1038/s41467-023-40117-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9976-7719</orcidid><orcidid>https://orcid.org/0000-0002-7700-1146</orcidid><orcidid>https://orcid.org/0000-0002-8193-2816</orcidid><orcidid>https://orcid.org/0000-0003-2716-0912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-07, Vol.14 (1), p.4508-4508, Article 4508 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_697550ca24594fefae53858ea158ca64 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 140/131 147/135 147/143 639/638/298/921 639/638/440/947 639/638/77/887 639/638/77/890 Absorption spectroscopy Aqueous solutions Carbon dioxide Charge transfer Chemical reduction Confined spaces Conversion Density functional theory Electron paramagnetic resonance Electron spin resonance Electron transfer Energy consumption Fuel production Humanities and Social Sciences Irradiation Kinetics Light Light irradiation Metal-organic frameworks Methane Methyl viologen Morphology multidisciplinary Photocatalysis Pore size Renewable fuels Science Science (multidisciplinary) Zirconium |
title | Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confining%20charge-transfer%20complex%20in%20a%20metal-organic%20framework%20for%20photocatalytic%20CO2%20reduction%20in%20water&rft.jtitle=Nature%20communications&rft.au=Karmakar,%20Sanchita&rft.date=2023-07-26&rft.volume=14&rft.issue=1&rft.spage=4508&rft.epage=4508&rft.pages=4508-4508&rft.artnum=4508&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40117-z&rft_dat=%3Cproquest_doaj_%3E2843035709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842307254&rft_id=info:pmid/37495574&rfr_iscdi=true |