Loading…

Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water

In the quest for renewable fuel production, the selective conversion of CO 2 to CH 4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineer...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-07, Vol.14 (1), p.4508-4508, Article 4508
Main Authors: Karmakar, Sanchita, Barman, Soumitra, Rahimi, Faruk Ahamed, Rambabu, Darsi, Nath, Sukhendu, Maji, Tapas Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193
cites cdi_FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193
container_end_page 4508
container_issue 1
container_start_page 4508
container_title Nature communications
container_volume 14
creator Karmakar, Sanchita
Barman, Soumitra
Rahimi, Faruk Ahamed
Rambabu, Darsi
Nath, Sukhendu
Maji, Tapas Kumar
description In the quest for renewable fuel production, the selective conversion of CO 2 to CH 4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO 2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH 4 from CO 2 . The reported material produces 7.3 mmol g −1 of CH 4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation. Maji and coworkers report the selective conversion of CO 2 to CH 4 under visible light by utilizing a charge transfer complex within Zr-MOF-808 pores. The complex ultimately facilitates efficient multielectron reduction at the Zr-catalytic center.
doi_str_mv 10.1038/s41467-023-40117-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_697550ca24594fefae53858ea158ca64</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_697550ca24594fefae53858ea158ca64</doaj_id><sourcerecordid>2843035709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhaOKqq1KX6CrSGzYpPg3jlcIjYBWqtQNrK0bz3UmQ2IPdkJpnx6nqYCywBtbvud8PrZvUVxSckUJb94lQUWtKsJ4JQilqno8Ks4YEbSiivFXf61Pi4uU9iQPrmkjxElxypXQUipxVuw2wbve974r7Q5ih9UUwSeHsbRhPAz4s-x9CeWIEwxViB343pYuwoj3IX4rXYjlYRemYCELHqZc3NyxMuJ2tlMf_OK-hwnj6-LYwZDw4nk-L75--vhlc13d3n2-2Xy4raykzVS1quWU6hakY7ThKJhsOSLVljCmeC21E0KLrWqV41DXCASwVlpRpFZRzc-Lm5W7DbA3h9iPEB9MgN48beQbGIg55oCm1kpKYoEJqYVDByh5IxsEKhsLtcis9yvrMLcjbi36_DjDC-jLiu93pgs_TP6hnEXXmfD2mRDD9xnTZMY-WRwG8BjmZFgjOOFSkSX4m3-k-zBHn99qUTFOFJNLJLaqbAwpRXS_01CyHNuYtTFMbgzz1BjmMZv4akpZ7DuMf9D_cf0Cc0K6aA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842307254</pqid></control><display><type>article</type><title>Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Karmakar, Sanchita ; Barman, Soumitra ; Rahimi, Faruk Ahamed ; Rambabu, Darsi ; Nath, Sukhendu ; Maji, Tapas Kumar</creator><creatorcontrib>Karmakar, Sanchita ; Barman, Soumitra ; Rahimi, Faruk Ahamed ; Rambabu, Darsi ; Nath, Sukhendu ; Maji, Tapas Kumar</creatorcontrib><description>In the quest for renewable fuel production, the selective conversion of CO 2 to CH 4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO 2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH 4 from CO 2 . The reported material produces 7.3 mmol g −1 of CH 4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation. Maji and coworkers report the selective conversion of CO 2 to CH 4 under visible light by utilizing a charge transfer complex within Zr-MOF-808 pores. The complex ultimately facilitates efficient multielectron reduction at the Zr-catalytic center.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40117-z</identifier><identifier>PMID: 37495574</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/131 ; 147/135 ; 147/143 ; 639/638/298/921 ; 639/638/440/947 ; 639/638/77/887 ; 639/638/77/890 ; Absorption spectroscopy ; Aqueous solutions ; Carbon dioxide ; Charge transfer ; Chemical reduction ; Confined spaces ; Conversion ; Density functional theory ; Electron paramagnetic resonance ; Electron spin resonance ; Electron transfer ; Energy consumption ; Fuel production ; Humanities and Social Sciences ; Irradiation ; Kinetics ; Light ; Light irradiation ; Metal-organic frameworks ; Methane ; Methyl viologen ; Morphology ; multidisciplinary ; Photocatalysis ; Pore size ; Renewable fuels ; Science ; Science (multidisciplinary) ; Zirconium</subject><ispartof>Nature communications, 2023-07, Vol.14 (1), p.4508-4508, Article 4508</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193</citedby><cites>FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193</cites><orcidid>0000-0001-9976-7719 ; 0000-0002-7700-1146 ; 0000-0002-8193-2816 ; 0000-0003-2716-0912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2842307254/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2842307254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Karmakar, Sanchita</creatorcontrib><creatorcontrib>Barman, Soumitra</creatorcontrib><creatorcontrib>Rahimi, Faruk Ahamed</creatorcontrib><creatorcontrib>Rambabu, Darsi</creatorcontrib><creatorcontrib>Nath, Sukhendu</creatorcontrib><creatorcontrib>Maji, Tapas Kumar</creatorcontrib><title>Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>In the quest for renewable fuel production, the selective conversion of CO 2 to CH 4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO 2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH 4 from CO 2 . The reported material produces 7.3 mmol g −1 of CH 4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation. Maji and coworkers report the selective conversion of CO 2 to CH 4 under visible light by utilizing a charge transfer complex within Zr-MOF-808 pores. The complex ultimately facilitates efficient multielectron reduction at the Zr-catalytic center.</description><subject>119/118</subject><subject>140/131</subject><subject>147/135</subject><subject>147/143</subject><subject>639/638/298/921</subject><subject>639/638/440/947</subject><subject>639/638/77/887</subject><subject>639/638/77/890</subject><subject>Absorption spectroscopy</subject><subject>Aqueous solutions</subject><subject>Carbon dioxide</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Confined spaces</subject><subject>Conversion</subject><subject>Density functional theory</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Electron transfer</subject><subject>Energy consumption</subject><subject>Fuel production</subject><subject>Humanities and Social Sciences</subject><subject>Irradiation</subject><subject>Kinetics</subject><subject>Light</subject><subject>Light irradiation</subject><subject>Metal-organic frameworks</subject><subject>Methane</subject><subject>Methyl viologen</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Photocatalysis</subject><subject>Pore size</subject><subject>Renewable fuels</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Zirconium</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhaOKqq1KX6CrSGzYpPg3jlcIjYBWqtQNrK0bz3UmQ2IPdkJpnx6nqYCywBtbvud8PrZvUVxSckUJb94lQUWtKsJ4JQilqno8Ks4YEbSiivFXf61Pi4uU9iQPrmkjxElxypXQUipxVuw2wbve974r7Q5ih9UUwSeHsbRhPAz4s-x9CeWIEwxViB343pYuwoj3IX4rXYjlYRemYCELHqZc3NyxMuJ2tlMf_OK-hwnj6-LYwZDw4nk-L75--vhlc13d3n2-2Xy4raykzVS1quWU6hakY7ThKJhsOSLVljCmeC21E0KLrWqV41DXCASwVlpRpFZRzc-Lm5W7DbA3h9iPEB9MgN48beQbGIg55oCm1kpKYoEJqYVDByh5IxsEKhsLtcis9yvrMLcjbi36_DjDC-jLiu93pgs_TP6hnEXXmfD2mRDD9xnTZMY-WRwG8BjmZFgjOOFSkSX4m3-k-zBHn99qUTFOFJNLJLaqbAwpRXS_01CyHNuYtTFMbgzz1BjmMZv4akpZ7DuMf9D_cf0Cc0K6aA</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Karmakar, Sanchita</creator><creator>Barman, Soumitra</creator><creator>Rahimi, Faruk Ahamed</creator><creator>Rambabu, Darsi</creator><creator>Nath, Sukhendu</creator><creator>Maji, Tapas Kumar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9976-7719</orcidid><orcidid>https://orcid.org/0000-0002-7700-1146</orcidid><orcidid>https://orcid.org/0000-0002-8193-2816</orcidid><orcidid>https://orcid.org/0000-0003-2716-0912</orcidid></search><sort><creationdate>20230726</creationdate><title>Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water</title><author>Karmakar, Sanchita ; Barman, Soumitra ; Rahimi, Faruk Ahamed ; Rambabu, Darsi ; Nath, Sukhendu ; Maji, Tapas Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>119/118</topic><topic>140/131</topic><topic>147/135</topic><topic>147/143</topic><topic>639/638/298/921</topic><topic>639/638/440/947</topic><topic>639/638/77/887</topic><topic>639/638/77/890</topic><topic>Absorption spectroscopy</topic><topic>Aqueous solutions</topic><topic>Carbon dioxide</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Confined spaces</topic><topic>Conversion</topic><topic>Density functional theory</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Electron transfer</topic><topic>Energy consumption</topic><topic>Fuel production</topic><topic>Humanities and Social Sciences</topic><topic>Irradiation</topic><topic>Kinetics</topic><topic>Light</topic><topic>Light irradiation</topic><topic>Metal-organic frameworks</topic><topic>Methane</topic><topic>Methyl viologen</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Photocatalysis</topic><topic>Pore size</topic><topic>Renewable fuels</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karmakar, Sanchita</creatorcontrib><creatorcontrib>Barman, Soumitra</creatorcontrib><creatorcontrib>Rahimi, Faruk Ahamed</creatorcontrib><creatorcontrib>Rambabu, Darsi</creatorcontrib><creatorcontrib>Nath, Sukhendu</creatorcontrib><creatorcontrib>Maji, Tapas Kumar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karmakar, Sanchita</au><au>Barman, Soumitra</au><au>Rahimi, Faruk Ahamed</au><au>Rambabu, Darsi</au><au>Nath, Sukhendu</au><au>Maji, Tapas Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-07-26</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4508</spage><epage>4508</epage><pages>4508-4508</pages><artnum>4508</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>In the quest for renewable fuel production, the selective conversion of CO 2 to CH 4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO 2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH 4 from CO 2 . The reported material produces 7.3 mmol g −1 of CH 4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation. Maji and coworkers report the selective conversion of CO 2 to CH 4 under visible light by utilizing a charge transfer complex within Zr-MOF-808 pores. The complex ultimately facilitates efficient multielectron reduction at the Zr-catalytic center.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37495574</pmid><doi>10.1038/s41467-023-40117-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9976-7719</orcidid><orcidid>https://orcid.org/0000-0002-7700-1146</orcidid><orcidid>https://orcid.org/0000-0002-8193-2816</orcidid><orcidid>https://orcid.org/0000-0003-2716-0912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-07, Vol.14 (1), p.4508-4508, Article 4508
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_697550ca24594fefae53858ea158ca64
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
140/131
147/135
147/143
639/638/298/921
639/638/440/947
639/638/77/887
639/638/77/890
Absorption spectroscopy
Aqueous solutions
Carbon dioxide
Charge transfer
Chemical reduction
Confined spaces
Conversion
Density functional theory
Electron paramagnetic resonance
Electron spin resonance
Electron transfer
Energy consumption
Fuel production
Humanities and Social Sciences
Irradiation
Kinetics
Light
Light irradiation
Metal-organic frameworks
Methane
Methyl viologen
Morphology
multidisciplinary
Photocatalysis
Pore size
Renewable fuels
Science
Science (multidisciplinary)
Zirconium
title Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confining%20charge-transfer%20complex%20in%20a%20metal-organic%20framework%20for%20photocatalytic%20CO2%20reduction%20in%20water&rft.jtitle=Nature%20communications&rft.au=Karmakar,%20Sanchita&rft.date=2023-07-26&rft.volume=14&rft.issue=1&rft.spage=4508&rft.epage=4508&rft.pages=4508-4508&rft.artnum=4508&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40117-z&rft_dat=%3Cproquest_doaj_%3E2843035709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b7b3119ba5f2183e425b3ee19c02273659f4494d7b7f3a66ea0ae67971e1c7193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842307254&rft_id=info:pmid/37495574&rfr_iscdi=true