Loading…

Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm

In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dand...

Full description

Saved in:
Bibliographic Details
Published in:Biomimetics (Basel, Switzerland) Switzerland), 2024-05, Vol.9 (5), p.298
Main Authors: Tang, Wenjie, Cao, Li, Chen, Yaodan, Chen, Binhe, Yue, Yinggao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83
cites cdi_FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83
container_end_page
container_issue 5
container_start_page 298
container_title Biomimetics (Basel, Switzerland)
container_volume 9
creator Tang, Wenjie
Cao, Li
Chen, Yaodan
Chen, Binhe
Yue, Yinggao
description In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.
doi_str_mv 10.3390/biomimetics9050298
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_69824e88d63a421fb7ea2880e2a74cae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795378405</galeid><doaj_id>oai_doaj_org_article_69824e88d63a421fb7ea2880e2a74cae</doaj_id><sourcerecordid>A795378405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83</originalsourceid><addsrcrecordid>eNptUsFu1DAQtRCIVkt_gAOKxIVLimMnsX1c2kIrFbXSwjma2JPgVRwvdgJa7vw3XnYpLCAfPHp-780bawh5XtBzzhV93VrvrMPJ6qhoRZmSj8gp4wXPRS344z_qE3IW45pSWqi6Kkv6lJxwKWRdUXlKvq_88MWOfXY19nZEDLv6bjNZZ7_BZP2Y3QffDuhi9gYimiwh7-dhsvlqCjBhv83uIaQUA2arrxDcsfh62wZrsksYDQ474Oh1OfQ-2OmTe0aedDBEPDvcC_Lx7dWHi-v89u7dzcXyNtcll1MuJGtrMFoK3gleM11gKQQzbVuZtuNKSSOUrArKEWRZAaVcMcoAurbATku-IDd7X-Nh3WyCdRC2jQfb_AR86JvDME2tJCtRSlNzKFnRtQKBSUmRgSg1YPJ6tffaBP95xjg1zkaNwwAj-jk2nNaUp8QpzYK8_Iu69nMY06SJVSmuqkKy36weUn87dj79sN6ZNkuhquRV0iqxzv_DSsegs9qP2NmEHwnYXqCDjzFg9zB3QZvdKjX_rlISvTgknluH5kHya3H4D8mex6I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059395182</pqid></control><display><type>article</type><title>Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tang, Wenjie ; Cao, Li ; Chen, Yaodan ; Chen, Binhe ; Yue, Yinggao</creator><creatorcontrib>Tang, Wenjie ; Cao, Li ; Chen, Yaodan ; Chen, Binhe ; Yue, Yinggao</creatorcontrib><description>In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.</description><identifier>ISSN: 2313-7673</identifier><identifier>EISSN: 2313-7673</identifier><identifier>DOI: 10.3390/biomimetics9050298</identifier><identifier>PMID: 38786508</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; dandelion algorithm ; Efficiency ; Engineering ; Engineering research ; function optimization ; Levy flight ; Mathematical models ; Mathematical optimization ; multi-objective optimization ; Neural networks ; Optimization algorithms ; particle swarm optimization algorithm ; Seeds ; Swarm intelligence ; Velocity</subject><ispartof>Biomimetics (Basel, Switzerland), 2024-05, Vol.9 (5), p.298</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83</citedby><cites>FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83</cites><orcidid>0009-0004-7220-5811 ; 0000-0002-5582-8791 ; 0000-0003-0728-5048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059395182/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059395182?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38786508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Wenjie</creatorcontrib><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Chen, Yaodan</creatorcontrib><creatorcontrib>Chen, Binhe</creatorcontrib><creatorcontrib>Yue, Yinggao</creatorcontrib><title>Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm</title><title>Biomimetics (Basel, Switzerland)</title><addtitle>Biomimetics (Basel)</addtitle><description>In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.</description><subject>Algorithms</subject><subject>dandelion algorithm</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Engineering research</subject><subject>function optimization</subject><subject>Levy flight</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>multi-objective optimization</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>particle swarm optimization algorithm</subject><subject>Seeds</subject><subject>Swarm intelligence</subject><subject>Velocity</subject><issn>2313-7673</issn><issn>2313-7673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAQtRCIVkt_gAOKxIVLimMnsX1c2kIrFbXSwjma2JPgVRwvdgJa7vw3XnYpLCAfPHp-780bawh5XtBzzhV93VrvrMPJ6qhoRZmSj8gp4wXPRS344z_qE3IW45pSWqi6Kkv6lJxwKWRdUXlKvq_88MWOfXY19nZEDLv6bjNZZ7_BZP2Y3QffDuhi9gYimiwh7-dhsvlqCjBhv83uIaQUA2arrxDcsfh62wZrsksYDQ474Oh1OfQ-2OmTe0aedDBEPDvcC_Lx7dWHi-v89u7dzcXyNtcll1MuJGtrMFoK3gleM11gKQQzbVuZtuNKSSOUrArKEWRZAaVcMcoAurbATku-IDd7X-Nh3WyCdRC2jQfb_AR86JvDME2tJCtRSlNzKFnRtQKBSUmRgSg1YPJ6tffaBP95xjg1zkaNwwAj-jk2nNaUp8QpzYK8_Iu69nMY06SJVSmuqkKy36weUn87dj79sN6ZNkuhquRV0iqxzv_DSsegs9qP2NmEHwnYXqCDjzFg9zB3QZvdKjX_rlISvTgknluH5kHya3H4D8mex6I</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tang, Wenjie</creator><creator>Cao, Li</creator><creator>Chen, Yaodan</creator><creator>Chen, Binhe</creator><creator>Yue, Yinggao</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-7220-5811</orcidid><orcidid>https://orcid.org/0000-0002-5582-8791</orcidid><orcidid>https://orcid.org/0000-0003-0728-5048</orcidid></search><sort><creationdate>20240501</creationdate><title>Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm</title><author>Tang, Wenjie ; Cao, Li ; Chen, Yaodan ; Chen, Binhe ; Yue, Yinggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>dandelion algorithm</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Engineering research</topic><topic>function optimization</topic><topic>Levy flight</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>multi-objective optimization</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>particle swarm optimization algorithm</topic><topic>Seeds</topic><topic>Swarm intelligence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Wenjie</creatorcontrib><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Chen, Yaodan</creatorcontrib><creatorcontrib>Chen, Binhe</creatorcontrib><creatorcontrib>Yue, Yinggao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomimetics (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Wenjie</au><au>Cao, Li</au><au>Chen, Yaodan</au><au>Chen, Binhe</au><au>Yue, Yinggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm</atitle><jtitle>Biomimetics (Basel, Switzerland)</jtitle><addtitle>Biomimetics (Basel)</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>298</spage><pages>298-</pages><issn>2313-7673</issn><eissn>2313-7673</eissn><abstract>In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38786508</pmid><doi>10.3390/biomimetics9050298</doi><orcidid>https://orcid.org/0009-0004-7220-5811</orcidid><orcidid>https://orcid.org/0000-0002-5582-8791</orcidid><orcidid>https://orcid.org/0000-0003-0728-5048</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2313-7673
ispartof Biomimetics (Basel, Switzerland), 2024-05, Vol.9 (5), p.298
issn 2313-7673
2313-7673
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_69824e88d63a421fb7ea2880e2a74cae
source Publicly Available Content Database; PubMed Central
subjects Algorithms
dandelion algorithm
Efficiency
Engineering
Engineering research
function optimization
Levy flight
Mathematical models
Mathematical optimization
multi-objective optimization
Neural networks
Optimization algorithms
particle swarm optimization algorithm
Seeds
Swarm intelligence
Velocity
title Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Engineering%20Optimization%20Problems%20Based%20on%20Multi-Strategy%20Particle%20Swarm%20Optimization%20Hybrid%20Dandelion%20Optimization%20Algorithm&rft.jtitle=Biomimetics%20(Basel,%20Switzerland)&rft.au=Tang,%20Wenjie&rft.date=2024-05-01&rft.volume=9&rft.issue=5&rft.spage=298&rft.pages=298-&rft.issn=2313-7673&rft.eissn=2313-7673&rft_id=info:doi/10.3390/biomimetics9050298&rft_dat=%3Cgale_doaj_%3EA795378405%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059395182&rft_id=info:pmid/38786508&rft_galeid=A795378405&rfr_iscdi=true