Loading…
Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm
In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dand...
Saved in:
Published in: | Biomimetics (Basel, Switzerland) Switzerland), 2024-05, Vol.9 (5), p.298 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83 |
container_end_page | |
container_issue | 5 |
container_start_page | 298 |
container_title | Biomimetics (Basel, Switzerland) |
container_volume | 9 |
creator | Tang, Wenjie Cao, Li Chen, Yaodan Chen, Binhe Yue, Yinggao |
description | In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms. |
doi_str_mv | 10.3390/biomimetics9050298 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_69824e88d63a421fb7ea2880e2a74cae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795378405</galeid><doaj_id>oai_doaj_org_article_69824e88d63a421fb7ea2880e2a74cae</doaj_id><sourcerecordid>A795378405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83</originalsourceid><addsrcrecordid>eNptUsFu1DAQtRCIVkt_gAOKxIVLimMnsX1c2kIrFbXSwjma2JPgVRwvdgJa7vw3XnYpLCAfPHp-780bawh5XtBzzhV93VrvrMPJ6qhoRZmSj8gp4wXPRS344z_qE3IW45pSWqi6Kkv6lJxwKWRdUXlKvq_88MWOfXY19nZEDLv6bjNZZ7_BZP2Y3QffDuhi9gYimiwh7-dhsvlqCjBhv83uIaQUA2arrxDcsfh62wZrsksYDQ474Oh1OfQ-2OmTe0aedDBEPDvcC_Lx7dWHi-v89u7dzcXyNtcll1MuJGtrMFoK3gleM11gKQQzbVuZtuNKSSOUrArKEWRZAaVcMcoAurbATku-IDd7X-Nh3WyCdRC2jQfb_AR86JvDME2tJCtRSlNzKFnRtQKBSUmRgSg1YPJ6tffaBP95xjg1zkaNwwAj-jk2nNaUp8QpzYK8_Iu69nMY06SJVSmuqkKy36weUn87dj79sN6ZNkuhquRV0iqxzv_DSsegs9qP2NmEHwnYXqCDjzFg9zB3QZvdKjX_rlISvTgknluH5kHya3H4D8mex6I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059395182</pqid></control><display><type>article</type><title>Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tang, Wenjie ; Cao, Li ; Chen, Yaodan ; Chen, Binhe ; Yue, Yinggao</creator><creatorcontrib>Tang, Wenjie ; Cao, Li ; Chen, Yaodan ; Chen, Binhe ; Yue, Yinggao</creatorcontrib><description>In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.</description><identifier>ISSN: 2313-7673</identifier><identifier>EISSN: 2313-7673</identifier><identifier>DOI: 10.3390/biomimetics9050298</identifier><identifier>PMID: 38786508</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; dandelion algorithm ; Efficiency ; Engineering ; Engineering research ; function optimization ; Levy flight ; Mathematical models ; Mathematical optimization ; multi-objective optimization ; Neural networks ; Optimization algorithms ; particle swarm optimization algorithm ; Seeds ; Swarm intelligence ; Velocity</subject><ispartof>Biomimetics (Basel, Switzerland), 2024-05, Vol.9 (5), p.298</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83</citedby><cites>FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83</cites><orcidid>0009-0004-7220-5811 ; 0000-0002-5582-8791 ; 0000-0003-0728-5048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059395182/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059395182?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38786508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Wenjie</creatorcontrib><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Chen, Yaodan</creatorcontrib><creatorcontrib>Chen, Binhe</creatorcontrib><creatorcontrib>Yue, Yinggao</creatorcontrib><title>Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm</title><title>Biomimetics (Basel, Switzerland)</title><addtitle>Biomimetics (Basel)</addtitle><description>In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.</description><subject>Algorithms</subject><subject>dandelion algorithm</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Engineering research</subject><subject>function optimization</subject><subject>Levy flight</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>multi-objective optimization</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>particle swarm optimization algorithm</subject><subject>Seeds</subject><subject>Swarm intelligence</subject><subject>Velocity</subject><issn>2313-7673</issn><issn>2313-7673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAQtRCIVkt_gAOKxIVLimMnsX1c2kIrFbXSwjma2JPgVRwvdgJa7vw3XnYpLCAfPHp-780bawh5XtBzzhV93VrvrMPJ6qhoRZmSj8gp4wXPRS344z_qE3IW45pSWqi6Kkv6lJxwKWRdUXlKvq_88MWOfXY19nZEDLv6bjNZZ7_BZP2Y3QffDuhi9gYimiwh7-dhsvlqCjBhv83uIaQUA2arrxDcsfh62wZrsksYDQ474Oh1OfQ-2OmTe0aedDBEPDvcC_Lx7dWHi-v89u7dzcXyNtcll1MuJGtrMFoK3gleM11gKQQzbVuZtuNKSSOUrArKEWRZAaVcMcoAurbATku-IDd7X-Nh3WyCdRC2jQfb_AR86JvDME2tJCtRSlNzKFnRtQKBSUmRgSg1YPJ6tffaBP95xjg1zkaNwwAj-jk2nNaUp8QpzYK8_Iu69nMY06SJVSmuqkKy36weUn87dj79sN6ZNkuhquRV0iqxzv_DSsegs9qP2NmEHwnYXqCDjzFg9zB3QZvdKjX_rlISvTgknluH5kHya3H4D8mex6I</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tang, Wenjie</creator><creator>Cao, Li</creator><creator>Chen, Yaodan</creator><creator>Chen, Binhe</creator><creator>Yue, Yinggao</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-7220-5811</orcidid><orcidid>https://orcid.org/0000-0002-5582-8791</orcidid><orcidid>https://orcid.org/0000-0003-0728-5048</orcidid></search><sort><creationdate>20240501</creationdate><title>Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm</title><author>Tang, Wenjie ; Cao, Li ; Chen, Yaodan ; Chen, Binhe ; Yue, Yinggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>dandelion algorithm</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Engineering research</topic><topic>function optimization</topic><topic>Levy flight</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>multi-objective optimization</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>particle swarm optimization algorithm</topic><topic>Seeds</topic><topic>Swarm intelligence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Wenjie</creatorcontrib><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Chen, Yaodan</creatorcontrib><creatorcontrib>Chen, Binhe</creatorcontrib><creatorcontrib>Yue, Yinggao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomimetics (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Wenjie</au><au>Cao, Li</au><au>Chen, Yaodan</au><au>Chen, Binhe</au><au>Yue, Yinggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm</atitle><jtitle>Biomimetics (Basel, Switzerland)</jtitle><addtitle>Biomimetics (Basel)</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>298</spage><pages>298-</pages><issn>2313-7673</issn><eissn>2313-7673</eissn><abstract>In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38786508</pmid><doi>10.3390/biomimetics9050298</doi><orcidid>https://orcid.org/0009-0004-7220-5811</orcidid><orcidid>https://orcid.org/0000-0002-5582-8791</orcidid><orcidid>https://orcid.org/0000-0003-0728-5048</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2313-7673 |
ispartof | Biomimetics (Basel, Switzerland), 2024-05, Vol.9 (5), p.298 |
issn | 2313-7673 2313-7673 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_69824e88d63a421fb7ea2880e2a74cae |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms dandelion algorithm Efficiency Engineering Engineering research function optimization Levy flight Mathematical models Mathematical optimization multi-objective optimization Neural networks Optimization algorithms particle swarm optimization algorithm Seeds Swarm intelligence Velocity |
title | Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Engineering%20Optimization%20Problems%20Based%20on%20Multi-Strategy%20Particle%20Swarm%20Optimization%20Hybrid%20Dandelion%20Optimization%20Algorithm&rft.jtitle=Biomimetics%20(Basel,%20Switzerland)&rft.au=Tang,%20Wenjie&rft.date=2024-05-01&rft.volume=9&rft.issue=5&rft.spage=298&rft.pages=298-&rft.issn=2313-7673&rft.eissn=2313-7673&rft_id=info:doi/10.3390/biomimetics9050298&rft_dat=%3Cgale_doaj_%3EA795378405%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-782b6adc873f7362c1e4772dbb5dbf3998d7985103ea845a0039202aafb1efc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059395182&rft_id=info:pmid/38786508&rft_galeid=A795378405&rfr_iscdi=true |