Loading…
AI Based Digital Twin Model for Cattle Caring
In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (19), p.7118 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3 |
container_end_page | |
container_issue | 19 |
container_start_page | 7118 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Han, Xue Lin, Zihuai Clark, Cameron Vucetic, Branka Lomax, Sabrina |
description | In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in real time, and the state of the next physiological cycle of cattle can be anticipated using this model. The basis of this work is the vast amount of data that is required to validate the legitimacy of the digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of cattle is about 5.197 after optimization. The digital twins model developed in this work can be used to forecast the cattle’s future time budget. |
doi_str_mv | 10.3390/s22197118 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_698e937067b14b4ba68adee713c17229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746531565</galeid><doaj_id>oai_doaj_org_article_698e937067b14b4ba68adee713c17229</doaj_id><sourcerecordid>A746531565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3</originalsourceid><addsrcrecordid>eNpdkktPHDEMxyNUBBQ48A1G6qU9DOQxeV0qLdvXSiAucI6cxwxZzU5oMtuq375ZFqFSJZIt5--fHcsIXRB8yZjGV4VSoiUh6gCdkI52raIUv_vHP0bvS1ljTBlj6ggdM0HrJeIEtYtVcw0l-OZLHOIMY3P_O07NbfJhbPqUmyXM8xiqyXEaztBhD2MJ5y_2FD18-3q__NHe3H1fLRc3resUn1ugnnJGrNdM9rKzgIUnmFnrBVjOlJdKsd4JCs5LqK2InjLcWSewplYDO0WrPdcnWJunHDeQ_5gE0TwHUh4M5Dm6MRihVahlsJCWdLbWEgp8CJIwRySlurI-71lPW7sJ3oVpzjC-gb59meKjGdIvo7kknO8AH18AOf3chjKbTSwujCNMIW2LoZJyojFmoko__Cddp22e6qh2qo5hLjmvqsu9aoD6gTj1qdZ19fiwiS5NoY81vpCdqEPkYpfwaZ_gciolh_61e4LNbgPM6wawv2MqnXs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724305755</pqid></control><display><type>article</type><title>AI Based Digital Twin Model for Cattle Caring</title><source>PubMed Central (Open Access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Han, Xue ; Lin, Zihuai ; Clark, Cameron ; Vucetic, Branka ; Lomax, Sabrina</creator><creatorcontrib>Han, Xue ; Lin, Zihuai ; Clark, Cameron ; Vucetic, Branka ; Lomax, Sabrina</creatorcontrib><description>In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in real time, and the state of the next physiological cycle of cattle can be anticipated using this model. The basis of this work is the vast amount of data that is required to validate the legitimacy of the digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of cattle is about 5.197 after optimization. The digital twins model developed in this work can be used to forecast the cattle’s future time budget.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22197118</identifier><identifier>PMID: 36236216</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Algorithms ; Analysis ; Artificial intelligence ; Breeding of animals ; Cattle ; Dairy cattle ; Data acquisition ; Data mining ; Data processing ; Datasets ; Deep learning ; digital twin ; Digital twins ; Farm management ; Farms ; LSTM model ; Machine learning ; Manufacturing ; Model accuracy ; Neural networks ; Power plants ; Product design ; Production planning ; Remote monitoring ; Sensors ; Time series ; Twins ; Wind power</subject><ispartof>Sensors (Basel, Switzerland), 2022-09, Vol.22 (19), p.7118</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3</citedby><cites>FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3</cites><orcidid>0000-0002-7644-2046 ; 0000-0002-6417-5788 ; 0000-0002-3294-0131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2724305755/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2724305755?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Lin, Zihuai</creatorcontrib><creatorcontrib>Clark, Cameron</creatorcontrib><creatorcontrib>Vucetic, Branka</creatorcontrib><creatorcontrib>Lomax, Sabrina</creatorcontrib><title>AI Based Digital Twin Model for Cattle Caring</title><title>Sensors (Basel, Switzerland)</title><description>In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in real time, and the state of the next physiological cycle of cattle can be anticipated using this model. The basis of this work is the vast amount of data that is required to validate the legitimacy of the digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of cattle is about 5.197 after optimization. The digital twins model developed in this work can be used to forecast the cattle’s future time budget.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Breeding of animals</subject><subject>Cattle</subject><subject>Dairy cattle</subject><subject>Data acquisition</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>digital twin</subject><subject>Digital twins</subject><subject>Farm management</subject><subject>Farms</subject><subject>LSTM model</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Power plants</subject><subject>Product design</subject><subject>Production planning</subject><subject>Remote monitoring</subject><subject>Sensors</subject><subject>Time series</subject><subject>Twins</subject><subject>Wind power</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktPHDEMxyNUBBQ48A1G6qU9DOQxeV0qLdvXSiAucI6cxwxZzU5oMtuq375ZFqFSJZIt5--fHcsIXRB8yZjGV4VSoiUh6gCdkI52raIUv_vHP0bvS1ljTBlj6ggdM0HrJeIEtYtVcw0l-OZLHOIMY3P_O07NbfJhbPqUmyXM8xiqyXEaztBhD2MJ5y_2FD18-3q__NHe3H1fLRc3resUn1ugnnJGrNdM9rKzgIUnmFnrBVjOlJdKsd4JCs5LqK2InjLcWSewplYDO0WrPdcnWJunHDeQ_5gE0TwHUh4M5Dm6MRihVahlsJCWdLbWEgp8CJIwRySlurI-71lPW7sJ3oVpzjC-gb59meKjGdIvo7kknO8AH18AOf3chjKbTSwujCNMIW2LoZJyojFmoko__Cddp22e6qh2qo5hLjmvqsu9aoD6gTj1qdZ19fiwiS5NoY81vpCdqEPkYpfwaZ_gciolh_61e4LNbgPM6wawv2MqnXs</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Han, Xue</creator><creator>Lin, Zihuai</creator><creator>Clark, Cameron</creator><creator>Vucetic, Branka</creator><creator>Lomax, Sabrina</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7644-2046</orcidid><orcidid>https://orcid.org/0000-0002-6417-5788</orcidid><orcidid>https://orcid.org/0000-0002-3294-0131</orcidid></search><sort><creationdate>20220920</creationdate><title>AI Based Digital Twin Model for Cattle Caring</title><author>Han, Xue ; Lin, Zihuai ; Clark, Cameron ; Vucetic, Branka ; Lomax, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Breeding of animals</topic><topic>Cattle</topic><topic>Dairy cattle</topic><topic>Data acquisition</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>digital twin</topic><topic>Digital twins</topic><topic>Farm management</topic><topic>Farms</topic><topic>LSTM model</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Power plants</topic><topic>Product design</topic><topic>Production planning</topic><topic>Remote monitoring</topic><topic>Sensors</topic><topic>Time series</topic><topic>Twins</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Lin, Zihuai</creatorcontrib><creatorcontrib>Clark, Cameron</creatorcontrib><creatorcontrib>Vucetic, Branka</creatorcontrib><creatorcontrib>Lomax, Sabrina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xue</au><au>Lin, Zihuai</au><au>Clark, Cameron</au><au>Vucetic, Branka</au><au>Lomax, Sabrina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI Based Digital Twin Model for Cattle Caring</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>22</volume><issue>19</issue><spage>7118</spage><pages>7118-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in real time, and the state of the next physiological cycle of cattle can be anticipated using this model. The basis of this work is the vast amount of data that is required to validate the legitimacy of the digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of cattle is about 5.197 after optimization. The digital twins model developed in this work can be used to forecast the cattle’s future time budget.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36236216</pmid><doi>10.3390/s22197118</doi><orcidid>https://orcid.org/0000-0002-7644-2046</orcidid><orcidid>https://orcid.org/0000-0002-6417-5788</orcidid><orcidid>https://orcid.org/0000-0002-3294-0131</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-09, Vol.22 (19), p.7118 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_698e937067b14b4ba68adee713c17229 |
source | PubMed Central (Open Access); ProQuest - Publicly Available Content Database |
subjects | Agriculture Algorithms Analysis Artificial intelligence Breeding of animals Cattle Dairy cattle Data acquisition Data mining Data processing Datasets Deep learning digital twin Digital twins Farm management Farms LSTM model Machine learning Manufacturing Model accuracy Neural networks Power plants Product design Production planning Remote monitoring Sensors Time series Twins Wind power |
title | AI Based Digital Twin Model for Cattle Caring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20Based%20Digital%20Twin%20Model%20for%20Cattle%20Caring&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Han,%20Xue&rft.date=2022-09-20&rft.volume=22&rft.issue=19&rft.spage=7118&rft.pages=7118-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22197118&rft_dat=%3Cgale_doaj_%3EA746531565%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724305755&rft_id=info:pmid/36236216&rft_galeid=A746531565&rfr_iscdi=true |