Loading…

AI Based Digital Twin Model for Cattle Caring

In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (19), p.7118
Main Authors: Han, Xue, Lin, Zihuai, Clark, Cameron, Vucetic, Branka, Lomax, Sabrina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3
cites cdi_FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3
container_end_page
container_issue 19
container_start_page 7118
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Han, Xue
Lin, Zihuai
Clark, Cameron
Vucetic, Branka
Lomax, Sabrina
description In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in real time, and the state of the next physiological cycle of cattle can be anticipated using this model. The basis of this work is the vast amount of data that is required to validate the legitimacy of the digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of cattle is about 5.197 after optimization. The digital twins model developed in this work can be used to forecast the cattle’s future time budget.
doi_str_mv 10.3390/s22197118
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_698e937067b14b4ba68adee713c17229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746531565</galeid><doaj_id>oai_doaj_org_article_698e937067b14b4ba68adee713c17229</doaj_id><sourcerecordid>A746531565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3</originalsourceid><addsrcrecordid>eNpdkktPHDEMxyNUBBQ48A1G6qU9DOQxeV0qLdvXSiAucI6cxwxZzU5oMtuq375ZFqFSJZIt5--fHcsIXRB8yZjGV4VSoiUh6gCdkI52raIUv_vHP0bvS1ljTBlj6ggdM0HrJeIEtYtVcw0l-OZLHOIMY3P_O07NbfJhbPqUmyXM8xiqyXEaztBhD2MJ5y_2FD18-3q__NHe3H1fLRc3resUn1ugnnJGrNdM9rKzgIUnmFnrBVjOlJdKsd4JCs5LqK2InjLcWSewplYDO0WrPdcnWJunHDeQ_5gE0TwHUh4M5Dm6MRihVahlsJCWdLbWEgp8CJIwRySlurI-71lPW7sJ3oVpzjC-gb59meKjGdIvo7kknO8AH18AOf3chjKbTSwujCNMIW2LoZJyojFmoko__Cddp22e6qh2qo5hLjmvqsu9aoD6gTj1qdZ19fiwiS5NoY81vpCdqEPkYpfwaZ_gciolh_61e4LNbgPM6wawv2MqnXs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724305755</pqid></control><display><type>article</type><title>AI Based Digital Twin Model for Cattle Caring</title><source>PubMed Central (Open Access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Han, Xue ; Lin, Zihuai ; Clark, Cameron ; Vucetic, Branka ; Lomax, Sabrina</creator><creatorcontrib>Han, Xue ; Lin, Zihuai ; Clark, Cameron ; Vucetic, Branka ; Lomax, Sabrina</creatorcontrib><description>In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in real time, and the state of the next physiological cycle of cattle can be anticipated using this model. The basis of this work is the vast amount of data that is required to validate the legitimacy of the digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of cattle is about 5.197 after optimization. The digital twins model developed in this work can be used to forecast the cattle’s future time budget.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22197118</identifier><identifier>PMID: 36236216</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Algorithms ; Analysis ; Artificial intelligence ; Breeding of animals ; Cattle ; Dairy cattle ; Data acquisition ; Data mining ; Data processing ; Datasets ; Deep learning ; digital twin ; Digital twins ; Farm management ; Farms ; LSTM model ; Machine learning ; Manufacturing ; Model accuracy ; Neural networks ; Power plants ; Product design ; Production planning ; Remote monitoring ; Sensors ; Time series ; Twins ; Wind power</subject><ispartof>Sensors (Basel, Switzerland), 2022-09, Vol.22 (19), p.7118</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3</citedby><cites>FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3</cites><orcidid>0000-0002-7644-2046 ; 0000-0002-6417-5788 ; 0000-0002-3294-0131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2724305755/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2724305755?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Lin, Zihuai</creatorcontrib><creatorcontrib>Clark, Cameron</creatorcontrib><creatorcontrib>Vucetic, Branka</creatorcontrib><creatorcontrib>Lomax, Sabrina</creatorcontrib><title>AI Based Digital Twin Model for Cattle Caring</title><title>Sensors (Basel, Switzerland)</title><description>In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in real time, and the state of the next physiological cycle of cattle can be anticipated using this model. The basis of this work is the vast amount of data that is required to validate the legitimacy of the digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of cattle is about 5.197 after optimization. The digital twins model developed in this work can be used to forecast the cattle’s future time budget.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Breeding of animals</subject><subject>Cattle</subject><subject>Dairy cattle</subject><subject>Data acquisition</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>digital twin</subject><subject>Digital twins</subject><subject>Farm management</subject><subject>Farms</subject><subject>LSTM model</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Power plants</subject><subject>Product design</subject><subject>Production planning</subject><subject>Remote monitoring</subject><subject>Sensors</subject><subject>Time series</subject><subject>Twins</subject><subject>Wind power</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktPHDEMxyNUBBQ48A1G6qU9DOQxeV0qLdvXSiAucI6cxwxZzU5oMtuq375ZFqFSJZIt5--fHcsIXRB8yZjGV4VSoiUh6gCdkI52raIUv_vHP0bvS1ljTBlj6ggdM0HrJeIEtYtVcw0l-OZLHOIMY3P_O07NbfJhbPqUmyXM8xiqyXEaztBhD2MJ5y_2FD18-3q__NHe3H1fLRc3resUn1ugnnJGrNdM9rKzgIUnmFnrBVjOlJdKsd4JCs5LqK2InjLcWSewplYDO0WrPdcnWJunHDeQ_5gE0TwHUh4M5Dm6MRihVahlsJCWdLbWEgp8CJIwRySlurI-71lPW7sJ3oVpzjC-gb59meKjGdIvo7kknO8AH18AOf3chjKbTSwujCNMIW2LoZJyojFmoko__Cddp22e6qh2qo5hLjmvqsu9aoD6gTj1qdZ19fiwiS5NoY81vpCdqEPkYpfwaZ_gciolh_61e4LNbgPM6wawv2MqnXs</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Han, Xue</creator><creator>Lin, Zihuai</creator><creator>Clark, Cameron</creator><creator>Vucetic, Branka</creator><creator>Lomax, Sabrina</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7644-2046</orcidid><orcidid>https://orcid.org/0000-0002-6417-5788</orcidid><orcidid>https://orcid.org/0000-0002-3294-0131</orcidid></search><sort><creationdate>20220920</creationdate><title>AI Based Digital Twin Model for Cattle Caring</title><author>Han, Xue ; Lin, Zihuai ; Clark, Cameron ; Vucetic, Branka ; Lomax, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Breeding of animals</topic><topic>Cattle</topic><topic>Dairy cattle</topic><topic>Data acquisition</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>digital twin</topic><topic>Digital twins</topic><topic>Farm management</topic><topic>Farms</topic><topic>LSTM model</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Power plants</topic><topic>Product design</topic><topic>Production planning</topic><topic>Remote monitoring</topic><topic>Sensors</topic><topic>Time series</topic><topic>Twins</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Lin, Zihuai</creatorcontrib><creatorcontrib>Clark, Cameron</creatorcontrib><creatorcontrib>Vucetic, Branka</creatorcontrib><creatorcontrib>Lomax, Sabrina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xue</au><au>Lin, Zihuai</au><au>Clark, Cameron</au><au>Vucetic, Branka</au><au>Lomax, Sabrina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI Based Digital Twin Model for Cattle Caring</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>22</volume><issue>19</issue><spage>7118</spage><pages>7118-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this paper, we develop innovative digital twins of cattle status that are powered by artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in real time, and the state of the next physiological cycle of cattle can be anticipated using this model. The basis of this work is the vast amount of data that is required to validate the legitimacy of the digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of cattle is about 5.197 after optimization. The digital twins model developed in this work can be used to forecast the cattle’s future time budget.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36236216</pmid><doi>10.3390/s22197118</doi><orcidid>https://orcid.org/0000-0002-7644-2046</orcidid><orcidid>https://orcid.org/0000-0002-6417-5788</orcidid><orcidid>https://orcid.org/0000-0002-3294-0131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-09, Vol.22 (19), p.7118
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_698e937067b14b4ba68adee713c17229
source PubMed Central (Open Access); ProQuest - Publicly Available Content Database
subjects Agriculture
Algorithms
Analysis
Artificial intelligence
Breeding of animals
Cattle
Dairy cattle
Data acquisition
Data mining
Data processing
Datasets
Deep learning
digital twin
Digital twins
Farm management
Farms
LSTM model
Machine learning
Manufacturing
Model accuracy
Neural networks
Power plants
Product design
Production planning
Remote monitoring
Sensors
Time series
Twins
Wind power
title AI Based Digital Twin Model for Cattle Caring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20Based%20Digital%20Twin%20Model%20for%20Cattle%20Caring&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Han,%20Xue&rft.date=2022-09-20&rft.volume=22&rft.issue=19&rft.spage=7118&rft.pages=7118-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22197118&rft_dat=%3Cgale_doaj_%3EA746531565%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-a2d2531bd937f74ba06d103bbd6ab538d7883fc62acd7a2366f2304bc6092b9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724305755&rft_id=info:pmid/36236216&rft_galeid=A746531565&rfr_iscdi=true