Loading…

Molybdenum Carbide Nanoparticles Coated into the Graphene Wrapping N‐Doped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media

Molybdenum carbide (Mo2C) is recognized as an alternative electrocatalyst to noble metal for the hydrogen evolution reaction (HER). Herein, a facile, low cost, and scalable method is provided for the fabrication of Mo2C‐based eletrocatalyst (Mo2C/G‐NCS) by a spray‐drying, and followed by annealing....

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2018-03, Vol.5 (3), p.1700733-n/a
Main Authors: Wei, Huifang, Xi, Qiaoya, Chen, Xi'an, Guo, Daying, Ding, Feng, Yang, Zhi, Wang, Shun, Li, Juan, Huang, Shaoming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molybdenum carbide (Mo2C) is recognized as an alternative electrocatalyst to noble metal for the hydrogen evolution reaction (HER). Herein, a facile, low cost, and scalable method is provided for the fabrication of Mo2C‐based eletrocatalyst (Mo2C/G‐NCS) by a spray‐drying, and followed by annealing. As‐prepared Mo2C/G‐NCS electrocatalyst displays that ultrafine Mo2C nanopartilces are uniformly embedded into graphene wrapping N‐doped porous carbon microspheres derived from chitosan. Such designed structure offer several favorable features for hydrogen evolution application: 1) the ultrasmall size of Mo2C affords a large exposed active sites; 2) graphene‐wrapping ensures great electrical conductivity; 3) porous structure increases the electrolyte–electrode contact points and lowers the charge transfer resistance; 4) N‐dopant interacts with H+ better than C atoms and favorably modifies the electronic structures of adjacent Mo and C atoms. As a result, the Mo2C/G‐NCS demonstrates superior HER activity with a very low overpotential of 70 or 66 mV to achieve current density of 10 mA cm−2, small Tafel slope of 39 or 37 mV dec−1, respectively, in acidic and alkaline media, and high stability, indicating that it is a great potential candidate as HER electrocatalyst. A simple, low cost, and scalable strategy for the fabrication of Mo2C‐based eletrocatalyst through spray‐drying and followed by annealing is demonstrated. As‐prepared Mo2C/G‐NCS catalyst exhibits excellent hydrogen evolution reaction performance both in acidic and alkaline media, which is attributed to synergistic effect from such an unique structure with graphene wrapping, ultrasmall Mo2C nanocrystallite, nitrogen‐dopant, and the well‐defined porous microspheres.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.201700733