Loading…
A Novel Approach to Reach Impedance Matching in Wireless Power Transfer Systems
Wireless power transfer (WPT) using magnetic resonant coupling technology, came into focus promptly by virtue of its long transfer distance, and its non-radiative and high-efficiency power transfer. The impedance matching has been studied in the literature in recent years. However, there is no suita...
Saved in:
Published in: | Applied sciences 2019-03, Vol.9 (5), p.976 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wireless power transfer (WPT) using magnetic resonant coupling technology, came into focus promptly by virtue of its long transfer distance, and its non-radiative and high-efficiency power transfer. The impedance matching has been studied in the literature in recent years. However, there is no suitable way to reach the optimum load in reality. In this paper, a new method is proposed to maximize the power transfer ability of a given pair of coupled coils. An analytical calculation of the mutual inductance is presented accurately with respect to the angled concentric multiple-turn printed spiral coils (PSC). In addition, the experimental results were in good agreement with the circuit simulation. Finally, a WPT experiment setup working at 3MHz resonance was established. The experiment results verified that the maximum transfer efficiency at fixed distances can be easily achieved by adjusting the angle to reach impedance matching. Compared to prior to optimization, the maximum improved efficiency was improved by 11%. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9050976 |