Loading…

A Review on the Influence of CO2/Shale Interaction on Shale Properties: Implications of CCS in Shales

Carbon capture and storage (CCS) is a developed technology to minimize CO2 emissions and reduce global climate change. Currently, shale gas formations are considered as a suitable target for CO2 sequestration projects predominantly due to their wide availability. Compared to conventional geological...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-06, Vol.13 (12), p.3200
Main Authors: Fatah, Ahmed, Bennour, Ziad, Ben Mahmud, Hisham, Gholami, Raoof, Hossain, Md. Mofazzal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon capture and storage (CCS) is a developed technology to minimize CO2 emissions and reduce global climate change. Currently, shale gas formations are considered as a suitable target for CO2 sequestration projects predominantly due to their wide availability. Compared to conventional geological formations including saline aquifers and coal seams, depleted shale formations provide larger storage potential due to the high adsorption capacity of CO2 compared to methane in the shale formation. However, the injected CO2 causes possible geochemical interactions with the shale formation during storage applications and CO2 enhanced shale gas recovery (ESGR) processes. The CO2/shale interaction is a key factor for the efficiency of CO2 storage in shale formations, as it can significantly alter the shale properties. The formation of carbonic acid from CO2 dissolution is the main cause for the alterations in the physical, chemical and mechanical properties of the shale, which in return affects the storage capacity, pore properties, and fluid transport. Therefore, in this paper, the effect of CO2 exposure on shale properties is comprehensively reviewed, to gain an in-depth understanding of the impact of CO2/shale interaction on shale properties. This paper reviews the current knowledge of the CO2/shale interactions and describes the results achieved to date. The pore structure is one of the most affected properties by CO2/shale interactions; several scholars indicated that the differences in mineral composition for shales would result in wide variations in pore structure system. A noticeable reduction in specific surface area of shales was observed after CO2 treatment, which in the long-term could decrease CO2 adsorption capacity, affecting the CO2 storage efficiency. Other factors including shale sedimentary, pressure and temperature can also alter the pore system and decrease the shale “caprock” seal efficiency. Similarly, the alteration in shales’ surface chemistry and functional species after CO2 treatment may increase the adsorption capacity of CO2, impacting the overall storage potential in shales. Furthermore, the injection of CO2 into shales may also influence the wetting behavior. Surface wettability is mainly affected by the presented minerals in shale, and less affected by brine salinity, temperature, organic content, and thermal maturity. Mainly, shales have strong water-wetting behavior in the presence of hydrocarbons, however, the alteration in shale
ISSN:1996-1073
1996-1073
DOI:10.3390/en13123200