Loading…
OligoM-Cancer: A multidimensional information platform for deep phenotyping of heterogenous oligometastatic cancer
Patients with oligometastatic cancer (OMC) exhibit better response to local therapeutic interventions and a more treatable tendency than those with polymetastatic cancers. However, studies on OMC are limited and lack effective integration for systematic comparison and personalized application, and t...
Saved in:
Published in: | Computational and structural biotechnology journal 2024-12, Vol.24, p.561-570 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Patients with oligometastatic cancer (OMC) exhibit better response to local therapeutic interventions and a more treatable tendency than those with polymetastatic cancers. However, studies on OMC are limited and lack effective integration for systematic comparison and personalized application, and the diagnosis and precise treatment of OMC remain controversial. The application of large language models in medicine remains challenging because of the requirement of high-quality medical data. Moreover, these models must be enhanced using precise domain-specific knowledge. Therefore, we developed the OligoM-Cancer platform (http://oligo.sysbio.org.cn), pioneering knowledge curation that depicts various aspects of oligometastases spectrum, including markers, diagnosis, prognosis, and therapy choices. A user-friendly website was developed using HTML, FLASK, MySQL, Bootstrap, Echarts, and JavaScript. This platform encompasses comprehensive knowledge and evidence of phenotypes and their associated factors. With 4059 items of literature retrieved, OligoM-Cancer includes 1345 valid publications and 393 OMC-associated factors. Additionally, the included clinical assistance tools enhance the interpretability and credibility of clinical translational practice. OligoM-Cancer facilitates knowledge-guided modeling for deep phenotyping of OMC and potentially assists large language models in supporting specialised oligometastasis applications, thereby enhancing their generalization and reliability.
[Display omitted]
•Heterogeneous oligometastasis requires high-quality knowledge integration and analysis.•OligoM-Cancer focuses on multidimensional evidence for oligometastatic cancer.•It deciphers oligometastases with diagnosis, treatment plans, and detailed factors.•It integrates studies and tools, enhancing interpretability, credibility, and personalization.•It aids knowledge-guided modeling for deep phenotyping, precision OMC research. |
---|---|
ISSN: | 2001-0370 2001-0370 |
DOI: | 10.1016/j.csbj.2024.08.015 |