Loading…

Passivator-Free Microwave–Hydrothermal Synthesis of High Quantum Yield Carbon Dots for All-Carbon Fluorescent Nanocomposite Films

Based on the self-passivation function of chitosan, an efficient, and green synthesis strategy was applied to prepare chitosan carbon dots (CDs). The quantum yield of carbon dots reached 35% under the conditions of hydrothermal temperature of 200 °C, hydrothermal time of 5 h, and chitosan concentrat...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-07, Vol.12 (15), p.2624
Main Authors: Wu, Jiayin, Lu, Qilin, Wang, Hanchen, Huang, Biao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the self-passivation function of chitosan, an efficient, and green synthesis strategy was applied to prepare chitosan carbon dots (CDs). The quantum yield of carbon dots reached 35% under the conditions of hydrothermal temperature of 200 °C, hydrothermal time of 5 h, and chitosan concentration of 2%. Moreover, the obtained carbon dots had high selectivity and sensitivity to Fe3+. Based on the Schiff base reaction between the aldehyde groups of dialdehyde cellulose nanofibrils (DNF) and the amino groups of CDs, a chemically cross-linked, novel, fluorescent composite film, with high transparency and high strength, was created using one-pot processing. Knowing that the fluorescence effect of the composite film on Fe3+ had a linear relationship in the concentration range of 0–100 μM, a fluorescent probe can be developed for quantitative analysis and detection of Fe3+. Owing to their excellent fluorescent and mechanical properties, the fluorescent nanocomposite films have potential applications in the fields of Fe3+ detection, fluorescent labeling, and biosensing.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12152624