Loading…
Enhanced Field Emission and Low-Pressure Hydrogen Sensing Properties from Al-N-Co-Doped ZnO Nanorods
ZnO nanostructures show great potential in hydrogen sensing at atmospheric conditions for good gas adsorption abilities. However, there is less research on low-pressure hydrogen sensing performance due to its low concentration and in-homogeneous distributions under low-pressure environments. Here, w...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2024-05, Vol.14 (10), p.863 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnO nanostructures show great potential in hydrogen sensing at atmospheric conditions for good gas adsorption abilities. However, there is less research on low-pressure hydrogen sensing performance due to its low concentration and in-homogeneous distributions under low-pressure environments. Here, we report the low-pressure hydrogen sensing by the construction of Al-N-co-doped ZnO nanorods based on the adsorption-induced field emission enhancement effect in the pressure range of 10
to 10
Pa. The investigation indicates that the Al-N-co-doped ZnO sample is the most sensitive to low-pressure hydrogen sensing among all ZnO samples, with the highest sensing current increase of 140% for 5 min emission. In addition, the increased amplitude of sensing current for the Al-N-co-doped ZnO sample could reach 75% at the pressure 7 × 10
Pa for 1 min emission. This work not only expands the hydrogen sensing applications to the co-doped ZnO nanomaterials, but also provides a promising approach to develop field emission cathodes with strong low-pressure hydrogen sensing effect. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano14100863 |