Loading…
Comparison of Four Control Methods for a Five-Choice Assistive Technology
Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participant...
Saved in:
Published in: | Frontiers in human neuroscience 2018-06, Vol.12, p.228-228 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583 |
---|---|
cites | cdi_FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583 |
container_end_page | 228 |
container_issue | |
container_start_page | 228 |
container_title | Frontiers in human neuroscience |
container_volume | 12 |
creator | Halder, Sebastian Takano, Kouji Kansaku, Kenji |
description | Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems. |
doi_str_mv | 10.3389/fnhum.2018.00228 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6a289c830735437ab51afdf860591296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6a289c830735437ab51afdf860591296</doaj_id><sourcerecordid>2058503516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583</originalsourceid><addsrcrecordid>eNpdUk1v1DAUjBCIlsKdE0TiwiXLsx1_XZCqiG1XKuJSzpbj2Buvknixk0r99_XutlXLydbzzDy_N1MUnxGsCBHyh5v6ZVxhQGIFgLF4U5wjxnBFEUNvX9zPig8p7QAYZhS9L86wlFggyc6LTRPGvY4-hakMrlyHJZZNmOYYhvK3nfvQpdKFWOpy7e9s1fTBG1tepuTTnAvlrTX9FIawvf9YvHN6SPbT43lR_F3_um2uq5s_V5vm8qYyVMBckVrwmhom61a2lFrNa6FBtx2zlgOvHWNAmONcOF3r2lFDOaOU1kTwTlNBLorNSbcLeqf20Y863qugvToWQtwqHWdvBquYxkIaQYCTzOe6pUi7zgkGVCIsWdb6edLaL-1oO2Pz4Hp4Jfr6ZfK92oY7RaXkgpAs8PUkYOJhIZOaQtQKgaBYcZASMuL7Y4sY_i02zWr0ydhh0JMNS1IYqKBAsksZ-u0_6C7bMeVlquwtB8bz-BkFTy1DStG65-8iUIdUqGMq1CEV6piKTPnycsxnwlMMyAP8cLCp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287067583</pqid></control><display><type>article</type><title>Comparison of Four Control Methods for a Five-Choice Assistive Technology</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Halder, Sebastian ; Takano, Kouji ; Kansaku, Kenji</creator><creatorcontrib>Halder, Sebastian ; Takano, Kouji ; Kansaku, Kenji</creatorcontrib><description>Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.</description><identifier>ISSN: 1662-5161</identifier><identifier>EISSN: 1662-5161</identifier><identifier>DOI: 10.3389/fnhum.2018.00228</identifier><identifier>PMID: 29928196</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Amyotrophic lateral sclerosis ; assistive technology ; Auditory evoked potentials ; auditory stimulation ; BCI ; Brain ; Brain research ; Communication ; Computer applications ; EEG/ERP ; Event-related potentials ; Eye ; eye-tracking ; Finger ; Implants ; Injuries ; Methods ; Neuroscience ; Sensory integration ; visual stimulation ; Visual system</subject><ispartof>Frontiers in human neuroscience, 2018-06, Vol.12, p.228-228</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Copyright © 2018 Halder, Takano and Kansaku. 2018 Halder, Takano and Kansaku</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583</citedby><cites>FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2287067583/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2287067583?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,26567,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29928196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halder, Sebastian</creatorcontrib><creatorcontrib>Takano, Kouji</creatorcontrib><creatorcontrib>Kansaku, Kenji</creatorcontrib><title>Comparison of Four Control Methods for a Five-Choice Assistive Technology</title><title>Frontiers in human neuroscience</title><addtitle>Front Hum Neurosci</addtitle><description>Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.</description><subject>Amyotrophic lateral sclerosis</subject><subject>assistive technology</subject><subject>Auditory evoked potentials</subject><subject>auditory stimulation</subject><subject>BCI</subject><subject>Brain</subject><subject>Brain research</subject><subject>Communication</subject><subject>Computer applications</subject><subject>EEG/ERP</subject><subject>Event-related potentials</subject><subject>Eye</subject><subject>eye-tracking</subject><subject>Finger</subject><subject>Implants</subject><subject>Injuries</subject><subject>Methods</subject><subject>Neuroscience</subject><subject>Sensory integration</subject><subject>visual stimulation</subject><subject>Visual system</subject><issn>1662-5161</issn><issn>1662-5161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1v1DAUjBCIlsKdE0TiwiXLsx1_XZCqiG1XKuJSzpbj2Buvknixk0r99_XutlXLydbzzDy_N1MUnxGsCBHyh5v6ZVxhQGIFgLF4U5wjxnBFEUNvX9zPig8p7QAYZhS9L86wlFggyc6LTRPGvY4-hakMrlyHJZZNmOYYhvK3nfvQpdKFWOpy7e9s1fTBG1tepuTTnAvlrTX9FIawvf9YvHN6SPbT43lR_F3_um2uq5s_V5vm8qYyVMBckVrwmhom61a2lFrNa6FBtx2zlgOvHWNAmONcOF3r2lFDOaOU1kTwTlNBLorNSbcLeqf20Y863qugvToWQtwqHWdvBquYxkIaQYCTzOe6pUi7zgkGVCIsWdb6edLaL-1oO2Pz4Hp4Jfr6ZfK92oY7RaXkgpAs8PUkYOJhIZOaQtQKgaBYcZASMuL7Y4sY_i02zWr0ydhh0JMNS1IYqKBAsksZ-u0_6C7bMeVlquwtB8bz-BkFTy1DStG65-8iUIdUqGMq1CEV6piKTPnycsxnwlMMyAP8cLCp</recordid><startdate>20180606</startdate><enddate>20180606</enddate><creator>Halder, Sebastian</creator><creator>Takano, Kouji</creator><creator>Kansaku, Kenji</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180606</creationdate><title>Comparison of Four Control Methods for a Five-Choice Assistive Technology</title><author>Halder, Sebastian ; Takano, Kouji ; Kansaku, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>assistive technology</topic><topic>Auditory evoked potentials</topic><topic>auditory stimulation</topic><topic>BCI</topic><topic>Brain</topic><topic>Brain research</topic><topic>Communication</topic><topic>Computer applications</topic><topic>EEG/ERP</topic><topic>Event-related potentials</topic><topic>Eye</topic><topic>eye-tracking</topic><topic>Finger</topic><topic>Implants</topic><topic>Injuries</topic><topic>Methods</topic><topic>Neuroscience</topic><topic>Sensory integration</topic><topic>visual stimulation</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halder, Sebastian</creatorcontrib><creatorcontrib>Takano, Kouji</creatorcontrib><creatorcontrib>Kansaku, Kenji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in human neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halder, Sebastian</au><au>Takano, Kouji</au><au>Kansaku, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Four Control Methods for a Five-Choice Assistive Technology</atitle><jtitle>Frontiers in human neuroscience</jtitle><addtitle>Front Hum Neurosci</addtitle><date>2018-06-06</date><risdate>2018</risdate><volume>12</volume><spage>228</spage><epage>228</epage><pages>228-228</pages><issn>1662-5161</issn><eissn>1662-5161</eissn><abstract>Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>29928196</pmid><doi>10.3389/fnhum.2018.00228</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5161 |
ispartof | Frontiers in human neuroscience, 2018-06, Vol.12, p.228-228 |
issn | 1662-5161 1662-5161 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6a289c830735437ab51afdf860591296 |
source | NORA - Norwegian Open Research Archives; Publicly Available Content (ProQuest); PubMed Central |
subjects | Amyotrophic lateral sclerosis assistive technology Auditory evoked potentials auditory stimulation BCI Brain Brain research Communication Computer applications EEG/ERP Event-related potentials Eye eye-tracking Finger Implants Injuries Methods Neuroscience Sensory integration visual stimulation Visual system |
title | Comparison of Four Control Methods for a Five-Choice Assistive Technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Four%20Control%20Methods%20for%20a%20Five-Choice%20Assistive%20Technology&rft.jtitle=Frontiers%20in%20human%20neuroscience&rft.au=Halder,%20Sebastian&rft.date=2018-06-06&rft.volume=12&rft.spage=228&rft.epage=228&rft.pages=228-228&rft.issn=1662-5161&rft.eissn=1662-5161&rft_id=info:doi/10.3389/fnhum.2018.00228&rft_dat=%3Cproquest_doaj_%3E2058503516%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287067583&rft_id=info:pmid/29928196&rfr_iscdi=true |