Loading…

Comparison of Four Control Methods for a Five-Choice Assistive Technology

Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participant...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in human neuroscience 2018-06, Vol.12, p.228-228
Main Authors: Halder, Sebastian, Takano, Kouji, Kansaku, Kenji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583
cites cdi_FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583
container_end_page 228
container_issue
container_start_page 228
container_title Frontiers in human neuroscience
container_volume 12
creator Halder, Sebastian
Takano, Kouji
Kansaku, Kenji
description Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.
doi_str_mv 10.3389/fnhum.2018.00228
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6a289c830735437ab51afdf860591296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6a289c830735437ab51afdf860591296</doaj_id><sourcerecordid>2058503516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583</originalsourceid><addsrcrecordid>eNpdUk1v1DAUjBCIlsKdE0TiwiXLsx1_XZCqiG1XKuJSzpbj2Buvknixk0r99_XutlXLydbzzDy_N1MUnxGsCBHyh5v6ZVxhQGIFgLF4U5wjxnBFEUNvX9zPig8p7QAYZhS9L86wlFggyc6LTRPGvY4-hakMrlyHJZZNmOYYhvK3nfvQpdKFWOpy7e9s1fTBG1tepuTTnAvlrTX9FIawvf9YvHN6SPbT43lR_F3_um2uq5s_V5vm8qYyVMBckVrwmhom61a2lFrNa6FBtx2zlgOvHWNAmONcOF3r2lFDOaOU1kTwTlNBLorNSbcLeqf20Y863qugvToWQtwqHWdvBquYxkIaQYCTzOe6pUi7zgkGVCIsWdb6edLaL-1oO2Pz4Hp4Jfr6ZfK92oY7RaXkgpAs8PUkYOJhIZOaQtQKgaBYcZASMuL7Y4sY_i02zWr0ydhh0JMNS1IYqKBAsksZ-u0_6C7bMeVlquwtB8bz-BkFTy1DStG65-8iUIdUqGMq1CEV6piKTPnycsxnwlMMyAP8cLCp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287067583</pqid></control><display><type>article</type><title>Comparison of Four Control Methods for a Five-Choice Assistive Technology</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Halder, Sebastian ; Takano, Kouji ; Kansaku, Kenji</creator><creatorcontrib>Halder, Sebastian ; Takano, Kouji ; Kansaku, Kenji</creatorcontrib><description>Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.</description><identifier>ISSN: 1662-5161</identifier><identifier>EISSN: 1662-5161</identifier><identifier>DOI: 10.3389/fnhum.2018.00228</identifier><identifier>PMID: 29928196</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Amyotrophic lateral sclerosis ; assistive technology ; Auditory evoked potentials ; auditory stimulation ; BCI ; Brain ; Brain research ; Communication ; Computer applications ; EEG/ERP ; Event-related potentials ; Eye ; eye-tracking ; Finger ; Implants ; Injuries ; Methods ; Neuroscience ; Sensory integration ; visual stimulation ; Visual system</subject><ispartof>Frontiers in human neuroscience, 2018-06, Vol.12, p.228-228</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Copyright © 2018 Halder, Takano and Kansaku. 2018 Halder, Takano and Kansaku</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583</citedby><cites>FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2287067583/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2287067583?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,26567,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29928196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halder, Sebastian</creatorcontrib><creatorcontrib>Takano, Kouji</creatorcontrib><creatorcontrib>Kansaku, Kenji</creatorcontrib><title>Comparison of Four Control Methods for a Five-Choice Assistive Technology</title><title>Frontiers in human neuroscience</title><addtitle>Front Hum Neurosci</addtitle><description>Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.</description><subject>Amyotrophic lateral sclerosis</subject><subject>assistive technology</subject><subject>Auditory evoked potentials</subject><subject>auditory stimulation</subject><subject>BCI</subject><subject>Brain</subject><subject>Brain research</subject><subject>Communication</subject><subject>Computer applications</subject><subject>EEG/ERP</subject><subject>Event-related potentials</subject><subject>Eye</subject><subject>eye-tracking</subject><subject>Finger</subject><subject>Implants</subject><subject>Injuries</subject><subject>Methods</subject><subject>Neuroscience</subject><subject>Sensory integration</subject><subject>visual stimulation</subject><subject>Visual system</subject><issn>1662-5161</issn><issn>1662-5161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1v1DAUjBCIlsKdE0TiwiXLsx1_XZCqiG1XKuJSzpbj2Buvknixk0r99_XutlXLydbzzDy_N1MUnxGsCBHyh5v6ZVxhQGIFgLF4U5wjxnBFEUNvX9zPig8p7QAYZhS9L86wlFggyc6LTRPGvY4-hakMrlyHJZZNmOYYhvK3nfvQpdKFWOpy7e9s1fTBG1tepuTTnAvlrTX9FIawvf9YvHN6SPbT43lR_F3_um2uq5s_V5vm8qYyVMBckVrwmhom61a2lFrNa6FBtx2zlgOvHWNAmONcOF3r2lFDOaOU1kTwTlNBLorNSbcLeqf20Y863qugvToWQtwqHWdvBquYxkIaQYCTzOe6pUi7zgkGVCIsWdb6edLaL-1oO2Pz4Hp4Jfr6ZfK92oY7RaXkgpAs8PUkYOJhIZOaQtQKgaBYcZASMuL7Y4sY_i02zWr0ydhh0JMNS1IYqKBAsksZ-u0_6C7bMeVlquwtB8bz-BkFTy1DStG65-8iUIdUqGMq1CEV6piKTPnycsxnwlMMyAP8cLCp</recordid><startdate>20180606</startdate><enddate>20180606</enddate><creator>Halder, Sebastian</creator><creator>Takano, Kouji</creator><creator>Kansaku, Kenji</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180606</creationdate><title>Comparison of Four Control Methods for a Five-Choice Assistive Technology</title><author>Halder, Sebastian ; Takano, Kouji ; Kansaku, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>assistive technology</topic><topic>Auditory evoked potentials</topic><topic>auditory stimulation</topic><topic>BCI</topic><topic>Brain</topic><topic>Brain research</topic><topic>Communication</topic><topic>Computer applications</topic><topic>EEG/ERP</topic><topic>Event-related potentials</topic><topic>Eye</topic><topic>eye-tracking</topic><topic>Finger</topic><topic>Implants</topic><topic>Injuries</topic><topic>Methods</topic><topic>Neuroscience</topic><topic>Sensory integration</topic><topic>visual stimulation</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halder, Sebastian</creatorcontrib><creatorcontrib>Takano, Kouji</creatorcontrib><creatorcontrib>Kansaku, Kenji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in human neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halder, Sebastian</au><au>Takano, Kouji</au><au>Kansaku, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Four Control Methods for a Five-Choice Assistive Technology</atitle><jtitle>Frontiers in human neuroscience</jtitle><addtitle>Front Hum Neurosci</addtitle><date>2018-06-06</date><risdate>2018</risdate><volume>12</volume><spage>228</spage><epage>228</epage><pages>228-228</pages><issn>1662-5161</issn><eissn>1662-5161</eissn><abstract>Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>29928196</pmid><doi>10.3389/fnhum.2018.00228</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5161
ispartof Frontiers in human neuroscience, 2018-06, Vol.12, p.228-228
issn 1662-5161
1662-5161
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6a289c830735437ab51afdf860591296
source NORA - Norwegian Open Research Archives; Publicly Available Content (ProQuest); PubMed Central
subjects Amyotrophic lateral sclerosis
assistive technology
Auditory evoked potentials
auditory stimulation
BCI
Brain
Brain research
Communication
Computer applications
EEG/ERP
Event-related potentials
Eye
eye-tracking
Finger
Implants
Injuries
Methods
Neuroscience
Sensory integration
visual stimulation
Visual system
title Comparison of Four Control Methods for a Five-Choice Assistive Technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Four%20Control%20Methods%20for%20a%20Five-Choice%20Assistive%20Technology&rft.jtitle=Frontiers%20in%20human%20neuroscience&rft.au=Halder,%20Sebastian&rft.date=2018-06-06&rft.volume=12&rft.spage=228&rft.epage=228&rft.pages=228-228&rft.issn=1662-5161&rft.eissn=1662-5161&rft_id=info:doi/10.3389/fnhum.2018.00228&rft_dat=%3Cproquest_doaj_%3E2058503516%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-348745c694b9b55ea748a0abd6ee7074f66036f778fa4a4f5c5765554387da583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287067583&rft_id=info:pmid/29928196&rfr_iscdi=true