Loading…

Predicting COVID-19 cases in various scenarios using RNN-LSTM models aided by adaptive linear regression to identify data anomalies

Abstract The evolution of the Sars-CoV-2 (COVID-19) virus pandemic has revealed that the problems of social inequality, poverty, public and private health systems guided by controversial public policies are much more complex than was conceived before the pandemic. Therefore, understanding how COVID-...

Full description

Saved in:
Bibliographic Details
Published in:Anais da Academia Brasileira de Ciências 2022-01, Vol.94 (suppl 3), p.e20210921-e20210921
Main Authors: ARANTES FILHO, LUIS RICARDO, RODRIGUES, MARCOS L., ROSA, REINALDO R., GUIMARÃES, LAMARTINE N.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c386t-fcc48756d1069c2076465a8e23dfc50e4d2895b646adecd07759a93c8659e6c83
container_end_page e20210921
container_issue suppl 3
container_start_page e20210921
container_title Anais da Academia Brasileira de Ciências
container_volume 94
creator ARANTES FILHO, LUIS RICARDO
RODRIGUES, MARCOS L.
ROSA, REINALDO R.
GUIMARÃES, LAMARTINE N.F.
description Abstract The evolution of the Sars-CoV-2 (COVID-19) virus pandemic has revealed that the problems of social inequality, poverty, public and private health systems guided by controversial public policies are much more complex than was conceived before the pandemic. Therefore, understanding how COVID-19 evolves in society and looking at the infection spread is a critical task to support efficient epidemiological actions capable of suppressing the rates of infections and deaths. In this article, we analyze daily COVID-19 infection data with two objectives: (i) to test the predictive power of a Recurrent Neural Network - Long Short Term Memory (RNN-LSTM) on the daily stochastic fluctuation in different scenarios, and (ii) analyze, through adaptive linear regression, possible anomalies in the reported data to provide a more realistic and reliable scenario to support epidemic control actions. Our results show that the approach is even more suitable for countries, states or cities where the rate of testing, diagnosis and prevention were low during the virus dissemination. In this sense, we focused on investigating countries and regions where the disease evolved in a severe and poorly controlled way, as in Brazil, highlighting the favelas in Rio de Janeiro as a regional scenario.
doi_str_mv 10.1590/0001-3765202220210921
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6a323f0cb133476a9fc413611006dced</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0001_37652022000700301</scielo_id><doaj_id>oai_doaj_org_article_6a323f0cb133476a9fc413611006dced</doaj_id><sourcerecordid>2726407528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-fcc48756d1069c2076465a8e23dfc50e4d2895b646adecd07759a93c8659e6c83</originalsourceid><addsrcrecordid>eNpVUcFuEzEQXSGQCIVPQPKRy5axvbbXRxSgREpbRAtXa2LPRo4262BvKuXMj7NL2kocRh6P3rx5eq-q3nO45MrCRwDgtTRaCRBiKg5W8BfVgmvT1kJbeFktnjGvqzel7ABEY1tYVH--ZwrRj3HYsuXtr9XnmlvmsVBhcWAPmGM6FlY8DXNb2LHMyB83N_X67v6a7VOgvjCMgQLbnBgGPIzxgVgfB8LMMm0zlRLTwMbEJtQwxu7EAo7IcEh77COVt9WrDvtC7x7fi-rn1y_3y2_1-vZqtfy0rr1s9Vh33jetUTpw0NYLMLrRClsSMnReATVBtFZtpikG8gGMURat9K1WlrRv5UW1OvOGhDt3yHGP-eQSRvdvkPLWYR6j78lplEJ24DdcysZotJ1vuNScA-jgKUxcl2eu4iP1ye3SMQ-TeHc3O-2e0pg-BkACnxY-nBcOOf0-UhndPk629j0ONFnshBG6AaPErFOdoT6nUjJ1z1o5uDlx99-Np8TlX5Jcmro</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726407528</pqid></control><display><type>article</type><title>Predicting COVID-19 cases in various scenarios using RNN-LSTM models aided by adaptive linear regression to identify data anomalies</title><source>SciELO</source><creator>ARANTES FILHO, LUIS RICARDO ; RODRIGUES, MARCOS L. ; ROSA, REINALDO R. ; GUIMARÃES, LAMARTINE N.F.</creator><creatorcontrib>ARANTES FILHO, LUIS RICARDO ; RODRIGUES, MARCOS L. ; ROSA, REINALDO R. ; GUIMARÃES, LAMARTINE N.F.</creatorcontrib><description>Abstract The evolution of the Sars-CoV-2 (COVID-19) virus pandemic has revealed that the problems of social inequality, poverty, public and private health systems guided by controversial public policies are much more complex than was conceived before the pandemic. Therefore, understanding how COVID-19 evolves in society and looking at the infection spread is a critical task to support efficient epidemiological actions capable of suppressing the rates of infections and deaths. In this article, we analyze daily COVID-19 infection data with two objectives: (i) to test the predictive power of a Recurrent Neural Network - Long Short Term Memory (RNN-LSTM) on the daily stochastic fluctuation in different scenarios, and (ii) analyze, through adaptive linear regression, possible anomalies in the reported data to provide a more realistic and reliable scenario to support epidemic control actions. Our results show that the approach is even more suitable for countries, states or cities where the rate of testing, diagnosis and prevention were low during the virus dissemination. In this sense, we focused on investigating countries and regions where the disease evolved in a severe and poorly controlled way, as in Brazil, highlighting the favelas in Rio de Janeiro as a regional scenario.</description><identifier>ISSN: 0001-3765</identifier><identifier>ISSN: 1678-2690</identifier><identifier>EISSN: 1678-2690</identifier><identifier>DOI: 10.1590/0001-3765202220210921</identifier><language>eng</language><publisher>Academia Brasileira de Ciências</publisher><subject>Brazil ; COVID-19 ; favelas ; machine learning ; MULTIDISCIPLINARY SCIENCES ; Rio de Janeiro ; RNN-LSTM</subject><ispartof>Anais da Academia Brasileira de Ciências, 2022-01, Vol.94 (suppl 3), p.e20210921-e20210921</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c386t-fcc48756d1069c2076465a8e23dfc50e4d2895b646adecd07759a93c8659e6c83</cites><orcidid>0000-0002-9199-6928 ; 0000-0002-2962-4322 ; 0000-0002-8470-8377 ; 0000-0002-0302-9162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,24130,27903,27904</link.rule.ids></links><search><creatorcontrib>ARANTES FILHO, LUIS RICARDO</creatorcontrib><creatorcontrib>RODRIGUES, MARCOS L.</creatorcontrib><creatorcontrib>ROSA, REINALDO R.</creatorcontrib><creatorcontrib>GUIMARÃES, LAMARTINE N.F.</creatorcontrib><title>Predicting COVID-19 cases in various scenarios using RNN-LSTM models aided by adaptive linear regression to identify data anomalies</title><title>Anais da Academia Brasileira de Ciências</title><addtitle>An. Acad. Bras. Ciênc</addtitle><description>Abstract The evolution of the Sars-CoV-2 (COVID-19) virus pandemic has revealed that the problems of social inequality, poverty, public and private health systems guided by controversial public policies are much more complex than was conceived before the pandemic. Therefore, understanding how COVID-19 evolves in society and looking at the infection spread is a critical task to support efficient epidemiological actions capable of suppressing the rates of infections and deaths. In this article, we analyze daily COVID-19 infection data with two objectives: (i) to test the predictive power of a Recurrent Neural Network - Long Short Term Memory (RNN-LSTM) on the daily stochastic fluctuation in different scenarios, and (ii) analyze, through adaptive linear regression, possible anomalies in the reported data to provide a more realistic and reliable scenario to support epidemic control actions. Our results show that the approach is even more suitable for countries, states or cities where the rate of testing, diagnosis and prevention were low during the virus dissemination. In this sense, we focused on investigating countries and regions where the disease evolved in a severe and poorly controlled way, as in Brazil, highlighting the favelas in Rio de Janeiro as a regional scenario.</description><subject>Brazil</subject><subject>COVID-19</subject><subject>favelas</subject><subject>machine learning</subject><subject>MULTIDISCIPLINARY SCIENCES</subject><subject>Rio de Janeiro</subject><subject>RNN-LSTM</subject><issn>0001-3765</issn><issn>1678-2690</issn><issn>1678-2690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUcFuEzEQXSGQCIVPQPKRy5axvbbXRxSgREpbRAtXa2LPRo4262BvKuXMj7NL2kocRh6P3rx5eq-q3nO45MrCRwDgtTRaCRBiKg5W8BfVgmvT1kJbeFktnjGvqzel7ABEY1tYVH--ZwrRj3HYsuXtr9XnmlvmsVBhcWAPmGM6FlY8DXNb2LHMyB83N_X67v6a7VOgvjCMgQLbnBgGPIzxgVgfB8LMMm0zlRLTwMbEJtQwxu7EAo7IcEh77COVt9WrDvtC7x7fi-rn1y_3y2_1-vZqtfy0rr1s9Vh33jetUTpw0NYLMLrRClsSMnReATVBtFZtpikG8gGMURat9K1WlrRv5UW1OvOGhDt3yHGP-eQSRvdvkPLWYR6j78lplEJ24DdcysZotJ1vuNScA-jgKUxcl2eu4iP1ye3SMQ-TeHc3O-2e0pg-BkACnxY-nBcOOf0-UhndPk629j0ONFnshBG6AaPErFOdoT6nUjJ1z1o5uDlx99-Np8TlX5Jcmro</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>ARANTES FILHO, LUIS RICARDO</creator><creator>RODRIGUES, MARCOS L.</creator><creator>ROSA, REINALDO R.</creator><creator>GUIMARÃES, LAMARTINE N.F.</creator><general>Academia Brasileira de Ciências</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>GPN</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9199-6928</orcidid><orcidid>https://orcid.org/0000-0002-2962-4322</orcidid><orcidid>https://orcid.org/0000-0002-8470-8377</orcidid><orcidid>https://orcid.org/0000-0002-0302-9162</orcidid></search><sort><creationdate>20220101</creationdate><title>Predicting COVID-19 cases in various scenarios using RNN-LSTM models aided by adaptive linear regression to identify data anomalies</title><author>ARANTES FILHO, LUIS RICARDO ; RODRIGUES, MARCOS L. ; ROSA, REINALDO R. ; GUIMARÃES, LAMARTINE N.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-fcc48756d1069c2076465a8e23dfc50e4d2895b646adecd07759a93c8659e6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brazil</topic><topic>COVID-19</topic><topic>favelas</topic><topic>machine learning</topic><topic>MULTIDISCIPLINARY SCIENCES</topic><topic>Rio de Janeiro</topic><topic>RNN-LSTM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARANTES FILHO, LUIS RICARDO</creatorcontrib><creatorcontrib>RODRIGUES, MARCOS L.</creatorcontrib><creatorcontrib>ROSA, REINALDO R.</creatorcontrib><creatorcontrib>GUIMARÃES, LAMARTINE N.F.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SciELO</collection><collection>Directory of Open Access Journals</collection><jtitle>Anais da Academia Brasileira de Ciências</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARANTES FILHO, LUIS RICARDO</au><au>RODRIGUES, MARCOS L.</au><au>ROSA, REINALDO R.</au><au>GUIMARÃES, LAMARTINE N.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting COVID-19 cases in various scenarios using RNN-LSTM models aided by adaptive linear regression to identify data anomalies</atitle><jtitle>Anais da Academia Brasileira de Ciências</jtitle><addtitle>An. Acad. Bras. Ciênc</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>94</volume><issue>suppl 3</issue><spage>e20210921</spage><epage>e20210921</epage><pages>e20210921-e20210921</pages><issn>0001-3765</issn><issn>1678-2690</issn><eissn>1678-2690</eissn><abstract>Abstract The evolution of the Sars-CoV-2 (COVID-19) virus pandemic has revealed that the problems of social inequality, poverty, public and private health systems guided by controversial public policies are much more complex than was conceived before the pandemic. Therefore, understanding how COVID-19 evolves in society and looking at the infection spread is a critical task to support efficient epidemiological actions capable of suppressing the rates of infections and deaths. In this article, we analyze daily COVID-19 infection data with two objectives: (i) to test the predictive power of a Recurrent Neural Network - Long Short Term Memory (RNN-LSTM) on the daily stochastic fluctuation in different scenarios, and (ii) analyze, through adaptive linear regression, possible anomalies in the reported data to provide a more realistic and reliable scenario to support epidemic control actions. Our results show that the approach is even more suitable for countries, states or cities where the rate of testing, diagnosis and prevention were low during the virus dissemination. In this sense, we focused on investigating countries and regions where the disease evolved in a severe and poorly controlled way, as in Brazil, highlighting the favelas in Rio de Janeiro as a regional scenario.</abstract><pub>Academia Brasileira de Ciências</pub><doi>10.1590/0001-3765202220210921</doi><orcidid>https://orcid.org/0000-0002-9199-6928</orcidid><orcidid>https://orcid.org/0000-0002-2962-4322</orcidid><orcidid>https://orcid.org/0000-0002-8470-8377</orcidid><orcidid>https://orcid.org/0000-0002-0302-9162</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-3765
ispartof Anais da Academia Brasileira de Ciências, 2022-01, Vol.94 (suppl 3), p.e20210921-e20210921
issn 0001-3765
1678-2690
1678-2690
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6a323f0cb133476a9fc413611006dced
source SciELO
subjects Brazil
COVID-19
favelas
machine learning
MULTIDISCIPLINARY SCIENCES
Rio de Janeiro
RNN-LSTM
title Predicting COVID-19 cases in various scenarios using RNN-LSTM models aided by adaptive linear regression to identify data anomalies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20COVID-19%20cases%20in%20various%20scenarios%20using%20RNN-LSTM%20models%20aided%20by%20adaptive%20linear%20regression%20to%20identify%20data%20anomalies&rft.jtitle=Anais%20da%20Academia%20Brasileira%20de%20Ci%C3%AAncias&rft.au=ARANTES%20FILHO,%20LUIS%20RICARDO&rft.date=2022-01-01&rft.volume=94&rft.issue=suppl%203&rft.spage=e20210921&rft.epage=e20210921&rft.pages=e20210921-e20210921&rft.issn=0001-3765&rft.eissn=1678-2690&rft_id=info:doi/10.1590/0001-3765202220210921&rft_dat=%3Cproquest_doaj_%3E2726407528%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-fcc48756d1069c2076465a8e23dfc50e4d2895b646adecd07759a93c8659e6c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726407528&rft_id=info:pmid/&rft_scielo_id=S0001_37652022000700301&rfr_iscdi=true