Loading…

Smoothing toroidal crossing spaces

We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of...

Full description

Saved in:
Bibliographic Details
Published in:Forum of mathematics. Pi 2021, Vol.9, Article e7
Main Authors: Felten, Simon, Filip, Matej, Ruddat, Helge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3
cites cdi_FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3
container_end_page
container_issue
container_start_page
container_title Forum of mathematics. Pi
container_volume 9
creator Felten, Simon
Filip, Matej
Ruddat, Helge
description We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.
doi_str_mv 10.1017/fmp.2021.8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6a57add51c244f30b7b367cf5706cc1d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_fmp_2021_8</cupid><doaj_id>oai_doaj_org_article_6a57add51c244f30b7b367cf5706cc1d</doaj_id><sourcerecordid>2562409379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3</originalsourceid><addsrcrecordid>eNptkEtLA0EQhAdRMMRc_AVBb-LGnvfuUYKPQMCDeh7mGTdkM-vM5uC_d5MN6sFTN8VHdXUhdIlhhgHLu9C0MwIEz8oTNCLAoeBQitM_-zma5LwGAAyc0gqP0NVrE2P3UW9X0y6mWDu9mdoUc94rudXW5wt0FvQm-8lxjtH748Pb_LlYvjwt5vfLwjLBusITZ3hZas8dLwVm2AYPzBgCznoDlTWMEhH6oCAZSI6D91JQ5mQlPRaWjtFi8HVRr1Wb6kanLxV1rQ5CTCulU1fbjVdCc6md49gSxgIFIw0V0gYuQViLXe91PXi1KX7ufO7UOu7Sto-vCBeEQUVl1VM3A3X4OPnwcxWD2leq-krVvlJV9vDtEdaNSbVb-V_Pf_BvnMV1yA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562409379</pqid></control><display><type>article</type><title>Smoothing toroidal crossing spaces</title><source>Cambridge University Press</source><creator>Felten, Simon ; Filip, Matej ; Ruddat, Helge</creator><creatorcontrib>Felten, Simon ; Filip, Matej ; Ruddat, Helge</creatorcontrib><description>We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.</description><identifier>ISSN: 2050-5086</identifier><identifier>EISSN: 2050-5086</identifier><identifier>DOI: 10.1017/fmp.2021.8</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>14D15 ; 14J32 ; 14J45 ; 32G05 ; Algebraic and Complex Geometry ; Deformation ; Degeneration ; Manifolds ; Smoothing ; Symmetry</subject><ispartof>Forum of mathematics. Pi, 2021, Vol.9, Article e7</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3</citedby><cites>FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2050508621000081/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>Felten, Simon</creatorcontrib><creatorcontrib>Filip, Matej</creatorcontrib><creatorcontrib>Ruddat, Helge</creatorcontrib><title>Smoothing toroidal crossing spaces</title><title>Forum of mathematics. Pi</title><addtitle>Forum of Mathematics, Pi</addtitle><description>We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.</description><subject>14D15</subject><subject>14J32</subject><subject>14J45</subject><subject>32G05</subject><subject>Algebraic and Complex Geometry</subject><subject>Deformation</subject><subject>Degeneration</subject><subject>Manifolds</subject><subject>Smoothing</subject><subject>Symmetry</subject><issn>2050-5086</issn><issn>2050-5086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkEtLA0EQhAdRMMRc_AVBb-LGnvfuUYKPQMCDeh7mGTdkM-vM5uC_d5MN6sFTN8VHdXUhdIlhhgHLu9C0MwIEz8oTNCLAoeBQitM_-zma5LwGAAyc0gqP0NVrE2P3UW9X0y6mWDu9mdoUc94rudXW5wt0FvQm-8lxjtH748Pb_LlYvjwt5vfLwjLBusITZ3hZas8dLwVm2AYPzBgCznoDlTWMEhH6oCAZSI6D91JQ5mQlPRaWjtFi8HVRr1Wb6kanLxV1rQ5CTCulU1fbjVdCc6md49gSxgIFIw0V0gYuQViLXe91PXi1KX7ufO7UOu7Sto-vCBeEQUVl1VM3A3X4OPnwcxWD2leq-krVvlJV9vDtEdaNSbVb-V_Pf_BvnMV1yA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Felten, Simon</creator><creator>Filip, Matej</creator><creator>Ruddat, Helge</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2021</creationdate><title>Smoothing toroidal crossing spaces</title><author>Felten, Simon ; Filip, Matej ; Ruddat, Helge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14D15</topic><topic>14J32</topic><topic>14J45</topic><topic>32G05</topic><topic>Algebraic and Complex Geometry</topic><topic>Deformation</topic><topic>Degeneration</topic><topic>Manifolds</topic><topic>Smoothing</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felten, Simon</creatorcontrib><creatorcontrib>Filip, Matej</creatorcontrib><creatorcontrib>Ruddat, Helge</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Forum of mathematics. Pi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felten, Simon</au><au>Filip, Matej</au><au>Ruddat, Helge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothing toroidal crossing spaces</atitle><jtitle>Forum of mathematics. Pi</jtitle><addtitle>Forum of Mathematics, Pi</addtitle><date>2021</date><risdate>2021</risdate><volume>9</volume><artnum>e7</artnum><issn>2050-5086</issn><eissn>2050-5086</eissn><abstract>We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/fmp.2021.8</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-5086
ispartof Forum of mathematics. Pi, 2021, Vol.9, Article e7
issn 2050-5086
2050-5086
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6a57add51c244f30b7b367cf5706cc1d
source Cambridge University Press
subjects 14D15
14J32
14J45
32G05
Algebraic and Complex Geometry
Deformation
Degeneration
Manifolds
Smoothing
Symmetry
title Smoothing toroidal crossing spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothing%20toroidal%20crossing%20spaces&rft.jtitle=Forum%20of%20mathematics.%20Pi&rft.au=Felten,%20Simon&rft.date=2021&rft.volume=9&rft.artnum=e7&rft.issn=2050-5086&rft.eissn=2050-5086&rft_id=info:doi/10.1017/fmp.2021.8&rft_dat=%3Cproquest_doaj_%3E2562409379%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562409379&rft_id=info:pmid/&rft_cupid=10_1017_fmp_2021_8&rfr_iscdi=true