Loading…
Smoothing toroidal crossing spaces
We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of...
Saved in:
Published in: | Forum of mathematics. Pi 2021, Vol.9, Article e7 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Forum of mathematics. Pi |
container_volume | 9 |
creator | Felten, Simon Filip, Matej Ruddat, Helge |
description | We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications. |
doi_str_mv | 10.1017/fmp.2021.8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6a57add51c244f30b7b367cf5706cc1d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_fmp_2021_8</cupid><doaj_id>oai_doaj_org_article_6a57add51c244f30b7b367cf5706cc1d</doaj_id><sourcerecordid>2562409379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3</originalsourceid><addsrcrecordid>eNptkEtLA0EQhAdRMMRc_AVBb-LGnvfuUYKPQMCDeh7mGTdkM-vM5uC_d5MN6sFTN8VHdXUhdIlhhgHLu9C0MwIEz8oTNCLAoeBQitM_-zma5LwGAAyc0gqP0NVrE2P3UW9X0y6mWDu9mdoUc94rudXW5wt0FvQm-8lxjtH748Pb_LlYvjwt5vfLwjLBusITZ3hZas8dLwVm2AYPzBgCznoDlTWMEhH6oCAZSI6D91JQ5mQlPRaWjtFi8HVRr1Wb6kanLxV1rQ5CTCulU1fbjVdCc6md49gSxgIFIw0V0gYuQViLXe91PXi1KX7ufO7UOu7Sto-vCBeEQUVl1VM3A3X4OPnwcxWD2leq-krVvlJV9vDtEdaNSbVb-V_Pf_BvnMV1yA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562409379</pqid></control><display><type>article</type><title>Smoothing toroidal crossing spaces</title><source>Cambridge University Press</source><creator>Felten, Simon ; Filip, Matej ; Ruddat, Helge</creator><creatorcontrib>Felten, Simon ; Filip, Matej ; Ruddat, Helge</creatorcontrib><description>We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.</description><identifier>ISSN: 2050-5086</identifier><identifier>EISSN: 2050-5086</identifier><identifier>DOI: 10.1017/fmp.2021.8</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>14D15 ; 14J32 ; 14J45 ; 32G05 ; Algebraic and Complex Geometry ; Deformation ; Degeneration ; Manifolds ; Smoothing ; Symmetry</subject><ispartof>Forum of mathematics. Pi, 2021, Vol.9, Article e7</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3</citedby><cites>FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2050508621000081/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>Felten, Simon</creatorcontrib><creatorcontrib>Filip, Matej</creatorcontrib><creatorcontrib>Ruddat, Helge</creatorcontrib><title>Smoothing toroidal crossing spaces</title><title>Forum of mathematics. Pi</title><addtitle>Forum of Mathematics, Pi</addtitle><description>We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.</description><subject>14D15</subject><subject>14J32</subject><subject>14J45</subject><subject>32G05</subject><subject>Algebraic and Complex Geometry</subject><subject>Deformation</subject><subject>Degeneration</subject><subject>Manifolds</subject><subject>Smoothing</subject><subject>Symmetry</subject><issn>2050-5086</issn><issn>2050-5086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkEtLA0EQhAdRMMRc_AVBb-LGnvfuUYKPQMCDeh7mGTdkM-vM5uC_d5MN6sFTN8VHdXUhdIlhhgHLu9C0MwIEz8oTNCLAoeBQitM_-zma5LwGAAyc0gqP0NVrE2P3UW9X0y6mWDu9mdoUc94rudXW5wt0FvQm-8lxjtH748Pb_LlYvjwt5vfLwjLBusITZ3hZas8dLwVm2AYPzBgCznoDlTWMEhH6oCAZSI6D91JQ5mQlPRaWjtFi8HVRr1Wb6kanLxV1rQ5CTCulU1fbjVdCc6md49gSxgIFIw0V0gYuQViLXe91PXi1KX7ufO7UOu7Sto-vCBeEQUVl1VM3A3X4OPnwcxWD2leq-krVvlJV9vDtEdaNSbVb-V_Pf_BvnMV1yA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Felten, Simon</creator><creator>Filip, Matej</creator><creator>Ruddat, Helge</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2021</creationdate><title>Smoothing toroidal crossing spaces</title><author>Felten, Simon ; Filip, Matej ; Ruddat, Helge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14D15</topic><topic>14J32</topic><topic>14J45</topic><topic>32G05</topic><topic>Algebraic and Complex Geometry</topic><topic>Deformation</topic><topic>Degeneration</topic><topic>Manifolds</topic><topic>Smoothing</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felten, Simon</creatorcontrib><creatorcontrib>Filip, Matej</creatorcontrib><creatorcontrib>Ruddat, Helge</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Forum of mathematics. Pi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felten, Simon</au><au>Filip, Matej</au><au>Ruddat, Helge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothing toroidal crossing spaces</atitle><jtitle>Forum of mathematics. Pi</jtitle><addtitle>Forum of Mathematics, Pi</addtitle><date>2021</date><risdate>2021</risdate><volume>9</volume><artnum>e7</artnum><issn>2050-5086</issn><eissn>2050-5086</eissn><abstract>We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/fmp.2021.8</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-5086 |
ispartof | Forum of mathematics. Pi, 2021, Vol.9, Article e7 |
issn | 2050-5086 2050-5086 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6a57add51c244f30b7b367cf5706cc1d |
source | Cambridge University Press |
subjects | 14D15 14J32 14J45 32G05 Algebraic and Complex Geometry Deformation Degeneration Manifolds Smoothing Symmetry |
title | Smoothing toroidal crossing spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothing%20toroidal%20crossing%20spaces&rft.jtitle=Forum%20of%20mathematics.%20Pi&rft.au=Felten,%20Simon&rft.date=2021&rft.volume=9&rft.artnum=e7&rft.issn=2050-5086&rft.eissn=2050-5086&rft_id=info:doi/10.1017/fmp.2021.8&rft_dat=%3Cproquest_doaj_%3E2562409379%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-e2db588ae5d586141cfe04bb20dceb09cb4326f0170740751fee7634d797e16c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562409379&rft_id=info:pmid/&rft_cupid=10_1017_fmp_2021_8&rfr_iscdi=true |