Loading…

Facemasks simple but powerful weapons to protect against COVID-19 spread: Can they have sides effects?

In the last few months, the spread of COVID-19 among humans has caused serious damages around the globe letting many countries economically unstable. Results obtained from conducted research by epidemiologists and virologists showed that, COVID-19 is mainly spread from symptomatic individuals to oth...

Full description

Saved in:
Bibliographic Details
Published in:Results in physics 2020-12, Vol.19, p.103425-103425, Article 103425
Main Authors: Atangana, Ernestine, Atangana, Abdon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the last few months, the spread of COVID-19 among humans has caused serious damages around the globe letting many countries economically unstable. Results obtained from conducted research by epidemiologists and virologists showed that, COVID-19 is mainly spread from symptomatic individuals to others who are in close contact via respiratory droplets, mouth and nose, which are the primary mode of transmission. World health organization regulations to help stop the spread of this deadly virus, indicated that, it is compulsory to utilize respiratory protective devices such as facemasks in the public. Indeed, the use of these facemasks around the globe has helped reduce the spread of COVID-19. The primary aim of facemasks, is to avoid inhaling air that could contain droplets with COVID-19. We should note that, respiration process is the movement of oxygen from external atmosphere to the cells within tissue and the transport of carbon dioxide outside. However, the rebreathing of carbon dioxide using a facemask has not been taken into consideration. The hypercapnia (excess inhaled content of CO2) has been recognized to be related to symptoms of fatigue, discomfort, muscular weakness, headaches as well as drowsiness. Rebreathing of CO2 has been a key to concern regarding the use of a facemask. Rebreathing usually occur when an expired air that is rich in CO2 stays long than normal in the breathing space of the respirator after a breath. The increase of the arterial CO2 concentration leads to symptoms that are aforementioned. Studies have been conducted on facemask shortages and on the appropriate facemask required to reduce the spread of COVID-19; however no study has been conducted to assess the possible relationship between CO2 inhalation due to facemask, to determine and recommend which mask is appropriate in the reduction of the spread of the coronavirus while simultaneously avoid CO2 inhalation by the facemask users. In the current paper, we provided a literature review on the use of facemasks with the aim to determine which facemasks could be used to avoid re-inhaling rejected CO2. Additionally, we presented mathematical models depicting the transport of COVID-19 spread through wind with high speed. We considered first mathematical models for which the effect air-heterogeneity is neglected, such that air flow follows Markovian process with a retardation factor, these models considered two different scenarios, the speed of wind is constant and time–space d
ISSN:2211-3797
2211-3797
DOI:10.1016/j.rinp.2020.103425