Loading…

On the Élö–Runyan–Poisson–Pearson Method to Forecast Football Matches

This is a work about football. In it, we depart from two well-known approaches to forecast the outcome of a football match (or even a full tournament) and take advantage of their strengths to develop a new method of prediction. We illustrate the Élö–Runyan rating system and the Poisson technique in...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-12, Vol.10 (23), p.4587
Main Authors: López-Barrientos, José Daniel, Zayat-Niño, Damián Alejandro, Hernández-Prado, Eric Xavier, Estudillo-Bravo, Yolanda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c363t-e03bdae74862281ff65ad46c7057dfd79965f4d57ef6a5ed73e6ac10552182503
container_end_page
container_issue 23
container_start_page 4587
container_title Mathematics (Basel)
container_volume 10
creator López-Barrientos, José Daniel
Zayat-Niño, Damián Alejandro
Hernández-Prado, Eric Xavier
Estudillo-Bravo, Yolanda
description This is a work about football. In it, we depart from two well-known approaches to forecast the outcome of a football match (or even a full tournament) and take advantage of their strengths to develop a new method of prediction. We illustrate the Élö–Runyan rating system and the Poisson technique in the English Premier League and we analyze their accuracies with respect to the actual results. We obtained an accuracy of 84.37% for the former, and 79.99% for the latter in this first exercise. Then, we present a criticism of these methods and use it to complement the aforementioned procedures, and hence, introduce the so-called Élö–Runyan–Poisson–Pearson method, which consists of adopting the distribution that best fits the historical distribution of goals to simulate the score of each match. Finally, we obtain a Monte Carlo-based forecast of the result. We test our mechanism to backcast the World Cup of Russia 2018, obtaining an accuracy of 87.09%; and forecast the results of the World Cup of Qatar 2022.
doi_str_mv 10.3390/math10234587
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6a9426b02411455b94ad3d87e2f8dee9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744755111</galeid><doaj_id>oai_doaj_org_article_6a9426b02411455b94ad3d87e2f8dee9</doaj_id><sourcerecordid>A744755111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e03bdae74862281ff65ad46c7057dfd79965f4d57ef6a5ed73e6ac10552182503</originalsourceid><addsrcrecordid>eNpNkc1qGzEQx5eSQI3rWx9gIdfY0bdWxxCaNBCTUtKzGEujeM165UryIbdec8679AXyJnmSqnYpmTnMj_n484dpms-ULDg35GILZU0J40J2-kMzYYzpua6Dk3f8sZnlvCE1DOWdMJNmeT-2ZY3t6_Pw-vvt18v3_fgEY4Vvsc85HgghVWqXWNbRtyW21zGhg1wqxLKCYWiXUNwa86fmNMCQcfavTpsf118err7O7-5vbq8u7-aOK17mSPjKA2rRKcY6GoKS4IVymkjtg9fGKBmElxqDAolec1TgKJGS0Y5JwqfN7VHXR9jYXeq3kJ5shN4eGjE9WkildwNaBUYwtSJMUCqkXBkBnvtOIwudRzRV6-yotUvx5x5zsZu4T2O1b1l1KKUghtetxXHrEapoP4ZYEriaHre9iyOGvvYvtRBaSkppPTg_HrgUc04Y_tukxP59mH3_MP4H17WLBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748554093</pqid></control><display><type>article</type><title>On the Élö–Runyan–Poisson–Pearson Method to Forecast Football Matches</title><source>Coronavirus Research Database</source><source>ProQuest Publicly Available Content database</source><creator>López-Barrientos, José Daniel ; Zayat-Niño, Damián Alejandro ; Hernández-Prado, Eric Xavier ; Estudillo-Bravo, Yolanda</creator><creatorcontrib>López-Barrientos, José Daniel ; Zayat-Niño, Damián Alejandro ; Hernández-Prado, Eric Xavier ; Estudillo-Bravo, Yolanda</creatorcontrib><description>This is a work about football. In it, we depart from two well-known approaches to forecast the outcome of a football match (or even a full tournament) and take advantage of their strengths to develop a new method of prediction. We illustrate the Élö–Runyan rating system and the Poisson technique in the English Premier League and we analyze their accuracies with respect to the actual results. We obtained an accuracy of 84.37% for the former, and 79.99% for the latter in this first exercise. Then, we present a criticism of these methods and use it to complement the aforementioned procedures, and hence, introduce the so-called Élö–Runyan–Poisson–Pearson method, which consists of adopting the distribution that best fits the historical distribution of goals to simulate the score of each match. Finally, we obtain a Monte Carlo-based forecast of the result. We test our mechanism to backcast the World Cup of Russia 2018, obtaining an accuracy of 87.09%; and forecast the results of the World Cup of Qatar 2022.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10234587</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Competitions ; English Premier League ; Football ; Forecasts and trends ; Hypotheses ; inverse transform method ; Mexico ; Poisson forecasting method ; Prediction theory ; Random variables ; recursive distributions ; Russia 2018 ; Soccer ; Tournaments &amp; championships ; Élö–Runyan rating system</subject><ispartof>Mathematics (Basel), 2022-12, Vol.10 (23), p.4587</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-e03bdae74862281ff65ad46c7057dfd79965f4d57ef6a5ed73e6ac10552182503</cites><orcidid>0000-0001-9315-1227 ; 0000-0002-7323-5076 ; 0000-0002-3371-0207 ; 0000-0003-3161-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748554093?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748554093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>López-Barrientos, José Daniel</creatorcontrib><creatorcontrib>Zayat-Niño, Damián Alejandro</creatorcontrib><creatorcontrib>Hernández-Prado, Eric Xavier</creatorcontrib><creatorcontrib>Estudillo-Bravo, Yolanda</creatorcontrib><title>On the Élö–Runyan–Poisson–Pearson Method to Forecast Football Matches</title><title>Mathematics (Basel)</title><description>This is a work about football. In it, we depart from two well-known approaches to forecast the outcome of a football match (or even a full tournament) and take advantage of their strengths to develop a new method of prediction. We illustrate the Élö–Runyan rating system and the Poisson technique in the English Premier League and we analyze their accuracies with respect to the actual results. We obtained an accuracy of 84.37% for the former, and 79.99% for the latter in this first exercise. Then, we present a criticism of these methods and use it to complement the aforementioned procedures, and hence, introduce the so-called Élö–Runyan–Poisson–Pearson method, which consists of adopting the distribution that best fits the historical distribution of goals to simulate the score of each match. Finally, we obtain a Monte Carlo-based forecast of the result. We test our mechanism to backcast the World Cup of Russia 2018, obtaining an accuracy of 87.09%; and forecast the results of the World Cup of Qatar 2022.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Competitions</subject><subject>English Premier League</subject><subject>Football</subject><subject>Forecasts and trends</subject><subject>Hypotheses</subject><subject>inverse transform method</subject><subject>Mexico</subject><subject>Poisson forecasting method</subject><subject>Prediction theory</subject><subject>Random variables</subject><subject>recursive distributions</subject><subject>Russia 2018</subject><subject>Soccer</subject><subject>Tournaments &amp; championships</subject><subject>Élö–Runyan rating system</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1qGzEQx5eSQI3rWx9gIdfY0bdWxxCaNBCTUtKzGEujeM165UryIbdec8679AXyJnmSqnYpmTnMj_n484dpms-ULDg35GILZU0J40J2-kMzYYzpua6Dk3f8sZnlvCE1DOWdMJNmeT-2ZY3t6_Pw-vvt18v3_fgEY4Vvsc85HgghVWqXWNbRtyW21zGhg1wqxLKCYWiXUNwa86fmNMCQcfavTpsf118err7O7-5vbq8u7-aOK17mSPjKA2rRKcY6GoKS4IVymkjtg9fGKBmElxqDAolec1TgKJGS0Y5JwqfN7VHXR9jYXeq3kJ5shN4eGjE9WkildwNaBUYwtSJMUCqkXBkBnvtOIwudRzRV6-yotUvx5x5zsZu4T2O1b1l1KKUghtetxXHrEapoP4ZYEriaHre9iyOGvvYvtRBaSkppPTg_HrgUc04Y_tukxP59mH3_MP4H17WLBw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>López-Barrientos, José Daniel</creator><creator>Zayat-Niño, Damián Alejandro</creator><creator>Hernández-Prado, Eric Xavier</creator><creator>Estudillo-Bravo, Yolanda</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9315-1227</orcidid><orcidid>https://orcid.org/0000-0002-7323-5076</orcidid><orcidid>https://orcid.org/0000-0002-3371-0207</orcidid><orcidid>https://orcid.org/0000-0003-3161-1480</orcidid></search><sort><creationdate>20221201</creationdate><title>On the Élö–Runyan–Poisson–Pearson Method to Forecast Football Matches</title><author>López-Barrientos, José Daniel ; Zayat-Niño, Damián Alejandro ; Hernández-Prado, Eric Xavier ; Estudillo-Bravo, Yolanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e03bdae74862281ff65ad46c7057dfd79965f4d57ef6a5ed73e6ac10552182503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Competitions</topic><topic>English Premier League</topic><topic>Football</topic><topic>Forecasts and trends</topic><topic>Hypotheses</topic><topic>inverse transform method</topic><topic>Mexico</topic><topic>Poisson forecasting method</topic><topic>Prediction theory</topic><topic>Random variables</topic><topic>recursive distributions</topic><topic>Russia 2018</topic><topic>Soccer</topic><topic>Tournaments &amp; championships</topic><topic>Élö–Runyan rating system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Barrientos, José Daniel</creatorcontrib><creatorcontrib>Zayat-Niño, Damián Alejandro</creatorcontrib><creatorcontrib>Hernández-Prado, Eric Xavier</creatorcontrib><creatorcontrib>Estudillo-Bravo, Yolanda</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Barrientos, José Daniel</au><au>Zayat-Niño, Damián Alejandro</au><au>Hernández-Prado, Eric Xavier</au><au>Estudillo-Bravo, Yolanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Élö–Runyan–Poisson–Pearson Method to Forecast Football Matches</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>10</volume><issue>23</issue><spage>4587</spage><pages>4587-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>This is a work about football. In it, we depart from two well-known approaches to forecast the outcome of a football match (or even a full tournament) and take advantage of their strengths to develop a new method of prediction. We illustrate the Élö–Runyan rating system and the Poisson technique in the English Premier League and we analyze their accuracies with respect to the actual results. We obtained an accuracy of 84.37% for the former, and 79.99% for the latter in this first exercise. Then, we present a criticism of these methods and use it to complement the aforementioned procedures, and hence, introduce the so-called Élö–Runyan–Poisson–Pearson method, which consists of adopting the distribution that best fits the historical distribution of goals to simulate the score of each match. Finally, we obtain a Monte Carlo-based forecast of the result. We test our mechanism to backcast the World Cup of Russia 2018, obtaining an accuracy of 87.09%; and forecast the results of the World Cup of Qatar 2022.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10234587</doi><orcidid>https://orcid.org/0000-0001-9315-1227</orcidid><orcidid>https://orcid.org/0000-0002-7323-5076</orcidid><orcidid>https://orcid.org/0000-0002-3371-0207</orcidid><orcidid>https://orcid.org/0000-0003-3161-1480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2022-12, Vol.10 (23), p.4587
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6a9426b02411455b94ad3d87e2f8dee9
source Coronavirus Research Database; ProQuest Publicly Available Content database
subjects Accuracy
Algorithms
Analysis
Competitions
English Premier League
Football
Forecasts and trends
Hypotheses
inverse transform method
Mexico
Poisson forecasting method
Prediction theory
Random variables
recursive distributions
Russia 2018
Soccer
Tournaments & championships
Élö–Runyan rating system
title On the Élö–Runyan–Poisson–Pearson Method to Forecast Football Matches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20%C3%89l%C3%B6%E2%80%93Runyan%E2%80%93Poisson%E2%80%93Pearson%20Method%20to%20Forecast%20Football%20Matches&rft.jtitle=Mathematics%20(Basel)&rft.au=L%C3%B3pez-Barrientos,%20Jos%C3%A9%20Daniel&rft.date=2022-12-01&rft.volume=10&rft.issue=23&rft.spage=4587&rft.pages=4587-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10234587&rft_dat=%3Cgale_doaj_%3EA744755111%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-e03bdae74862281ff65ad46c7057dfd79965f4d57ef6a5ed73e6ac10552182503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748554093&rft_id=info:pmid/&rft_galeid=A744755111&rfr_iscdi=true