Loading…
Modeling, Identification, and Simulation of Positional Displacement Control for Ribbon Bridges
The demand of river-crossing is steadily increasing, the speedy and safety are two most important factors that decide the success of the applied solutions. This paper partially proposes a method for ribbon bridge installation and self-correction by describing the planar motion for a ribbon bridge, i...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The demand of river-crossing is steadily increasing, the speedy and safety are two most important factors that decide the success of the applied solutions. This paper partially proposes a method for ribbon bridge installation and self-correction by describing the planar motion for a ribbon bridge, including several experimentally identified over a certain range of speeds. The mathematical modeling and system identification aim to provide a model that is sufficient for allowance of model-based control designs. In order to design the stable yaw control system of auto-correction of positional displacement, the Linear-Quadratic Regulator (LQR) was employed for yaw controller. Accordingly, the numerical study was carried out under a variety of disturbances to verify the system modeling and the efficiency of the designed controller. The simulation results demonstrate that the proposed controller has promising feasibility of the yaw placement automatic correct during operation and further extended results of the whole bridge system. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/201815902026 |