Loading…

A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells

Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations...

Full description

Saved in:
Bibliographic Details
Published in:BMC biology 2020-12, Vol.18 (1), p.193-193, Article 193
Main Authors: Brookhouser, Nicholas, Nguyen, Toan, Tekel, Stefan J, Standage-Beier, Kylie, Wang, Xiao, Brafman, David A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c631t-991488dfa50449b0b22acb77c7dc8a7c87080a93ad9e6060ddf45736c92c2bf23
cites cdi_FETCH-LOGICAL-c631t-991488dfa50449b0b22acb77c7dc8a7c87080a93ad9e6060ddf45736c92c2bf23
container_end_page 193
container_issue 1
container_start_page 193
container_title BMC biology
container_volume 18
creator Brookhouser, Nicholas
Nguyen, Toan
Tekel, Stefan J
Standage-Beier, Kylie
Wang, Xiao
Brafman, David A
description Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.
doi_str_mv 10.1186/s12915-020-00929-7
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6ad608a62a4e4e7791fc2c26fe4ae154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650501515</galeid><doaj_id>oai_doaj_org_article_6ad608a62a4e4e7791fc2c26fe4ae154</doaj_id><sourcerecordid>A650501515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631t-991488dfa50449b0b22acb77c7dc8a7c87080a93ad9e6060ddf45736c92c2bf23</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEoqXwAixQJDawSLn-SRxvkIZRgZEqVQLK1rqxb6YeZeJiZxC8PU6nlA5igbywZX_nXPnoFMVzBqeMtc2bxLhmdQUcKgDNdaUeFMdMSVYpAPXw3vmoeJLSBoDXSonHxZEQgqmaiePiclEuMelqS87jRK5ER2NIfqRyijgmT-NURroOcaJY0ojdQCnv0dur7fwW-nLx7qyaMK5p1lsahvS0eNTjkOjZ7X5SXL4_-7L8WJ1ffFgtF-eVbQSbKq2ZbFvXYw1S6g46ztF2SlnlbIvKtgpaQC3QaWqgAed6WSvRWM0t73ouTorV3tcF3Jjr6LcYf5qA3txchLg2GCdvBzINugZabDhKkqSUZr3NLk1PEonVMnu93Xtd77qchs2fizgcmB6-jP7KrMN3kyNVXNfZ4NWtQQzfdpQms_VpjgNHCrtkuFTAlRaMZfTlX-gm7OKYo5opxkBr2f6h1pg_4Mc-5Ll2NjWLpoYaWM3msaf_oPJytPU2jNT7fH8geH0gyMxEP6Y17lIyq8-f_p-9-HrI8j1rY0gpUn-XHQMzF9bsC2tyYc1NYY3Kohf3U7-T_G6o-AXOSOJv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471109948</pqid></control><display><type>article</type><title>A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells</title><source>Publicly Available Content Database</source><source>PubMed</source><creator>Brookhouser, Nicholas ; Nguyen, Toan ; Tekel, Stefan J ; Standage-Beier, Kylie ; Wang, Xiao ; Brafman, David A</creator><creatorcontrib>Brookhouser, Nicholas ; Nguyen, Toan ; Tekel, Stefan J ; Standage-Beier, Kylie ; Wang, Xiao ; Brafman, David A</creatorcontrib><description>Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.</description><identifier>ISSN: 1741-7007</identifier><identifier>EISSN: 1741-7007</identifier><identifier>DOI: 10.1186/s12915-020-00929-7</identifier><identifier>PMID: 33317513</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adenine ; Adenine - chemistry ; Adenosine ; Adenosine - genetics ; Adenosine - metabolism ; Base Composition ; Base editor ; Cell cycle ; Cell division ; Conversion ; CRISPR ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; Deoxyribonucleic acid ; DNA ; DNA damage ; Editing ; Editors ; Efficiency ; Enrichment ; Enzymes ; Flow cytometry ; Fluorescence ; Gene Editing - methods ; Gene loci ; Gene targeting ; Genes, Reporter ; Genetic modification ; Genome modification ; Genomes ; Green fluorescent protein ; Human pluripotent stem cells ; Humans ; Identification and classification ; Luminescent Proteins - chemistry ; Methods ; Microscopy ; Multiplexing ; Mutation ; Nucleotides ; Pluripotency ; Pluripotent Stem Cells - metabolism ; Populations ; Proteins ; Real time ; Red Fluorescent Protein ; Rot ; Single-Cell Analysis ; Stem cells ; Stop codon ; Transfection</subject><ispartof>BMC biology, 2020-12, Vol.18 (1), p.193-193, Article 193</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c631t-991488dfa50449b0b22acb77c7dc8a7c87080a93ad9e6060ddf45736c92c2bf23</citedby><cites>FETCH-LOGICAL-c631t-991488dfa50449b0b22acb77c7dc8a7c87080a93ad9e6060ddf45736c92c2bf23</cites><orcidid>0000-0001-6131-2532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471109948/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471109948?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33317513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brookhouser, Nicholas</creatorcontrib><creatorcontrib>Nguyen, Toan</creatorcontrib><creatorcontrib>Tekel, Stefan J</creatorcontrib><creatorcontrib>Standage-Beier, Kylie</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Brafman, David A</creatorcontrib><title>A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells</title><title>BMC biology</title><addtitle>BMC Biol</addtitle><description>Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.</description><subject>Adenine</subject><subject>Adenine - chemistry</subject><subject>Adenosine</subject><subject>Adenosine - genetics</subject><subject>Adenosine - metabolism</subject><subject>Base Composition</subject><subject>Base editor</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Conversion</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Editing</subject><subject>Editors</subject><subject>Efficiency</subject><subject>Enrichment</subject><subject>Enzymes</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Gene Editing - methods</subject><subject>Gene loci</subject><subject>Gene targeting</subject><subject>Genes, Reporter</subject><subject>Genetic modification</subject><subject>Genome modification</subject><subject>Genomes</subject><subject>Green fluorescent protein</subject><subject>Human pluripotent stem cells</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Luminescent Proteins - chemistry</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Multiplexing</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Populations</subject><subject>Proteins</subject><subject>Real time</subject><subject>Red Fluorescent Protein</subject><subject>Rot</subject><subject>Single-Cell Analysis</subject><subject>Stem cells</subject><subject>Stop codon</subject><subject>Transfection</subject><issn>1741-7007</issn><issn>1741-7007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1u1DAUhSMEoqXwAixQJDawSLn-SRxvkIZRgZEqVQLK1rqxb6YeZeJiZxC8PU6nlA5igbywZX_nXPnoFMVzBqeMtc2bxLhmdQUcKgDNdaUeFMdMSVYpAPXw3vmoeJLSBoDXSonHxZEQgqmaiePiclEuMelqS87jRK5ER2NIfqRyijgmT-NURroOcaJY0ojdQCnv0dur7fwW-nLx7qyaMK5p1lsahvS0eNTjkOjZ7X5SXL4_-7L8WJ1ffFgtF-eVbQSbKq2ZbFvXYw1S6g46ztF2SlnlbIvKtgpaQC3QaWqgAed6WSvRWM0t73ouTorV3tcF3Jjr6LcYf5qA3txchLg2GCdvBzINugZabDhKkqSUZr3NLk1PEonVMnu93Xtd77qchs2fizgcmB6-jP7KrMN3kyNVXNfZ4NWtQQzfdpQms_VpjgNHCrtkuFTAlRaMZfTlX-gm7OKYo5opxkBr2f6h1pg_4Mc-5Ll2NjWLpoYaWM3msaf_oPJytPU2jNT7fH8geH0gyMxEP6Y17lIyq8-f_p-9-HrI8j1rY0gpUn-XHQMzF9bsC2tyYc1NYY3Kohf3U7-T_G6o-AXOSOJv</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Brookhouser, Nicholas</creator><creator>Nguyen, Toan</creator><creator>Tekel, Stefan J</creator><creator>Standage-Beier, Kylie</creator><creator>Wang, Xiao</creator><creator>Brafman, David A</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>4U-</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6131-2532</orcidid></search><sort><creationdate>20201214</creationdate><title>A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells</title><author>Brookhouser, Nicholas ; Nguyen, Toan ; Tekel, Stefan J ; Standage-Beier, Kylie ; Wang, Xiao ; Brafman, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631t-991488dfa50449b0b22acb77c7dc8a7c87080a93ad9e6060ddf45736c92c2bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenine</topic><topic>Adenine - chemistry</topic><topic>Adenosine</topic><topic>Adenosine - genetics</topic><topic>Adenosine - metabolism</topic><topic>Base Composition</topic><topic>Base editor</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Conversion</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Editing</topic><topic>Editors</topic><topic>Efficiency</topic><topic>Enrichment</topic><topic>Enzymes</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Gene Editing - methods</topic><topic>Gene loci</topic><topic>Gene targeting</topic><topic>Genes, Reporter</topic><topic>Genetic modification</topic><topic>Genome modification</topic><topic>Genomes</topic><topic>Green fluorescent protein</topic><topic>Human pluripotent stem cells</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Luminescent Proteins - chemistry</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Multiplexing</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Populations</topic><topic>Proteins</topic><topic>Real time</topic><topic>Red Fluorescent Protein</topic><topic>Rot</topic><topic>Single-Cell Analysis</topic><topic>Stem cells</topic><topic>Stop codon</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brookhouser, Nicholas</creatorcontrib><creatorcontrib>Nguyen, Toan</creatorcontrib><creatorcontrib>Tekel, Stefan J</creatorcontrib><creatorcontrib>Standage-Beier, Kylie</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Brafman, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brookhouser, Nicholas</au><au>Nguyen, Toan</au><au>Tekel, Stefan J</au><au>Standage-Beier, Kylie</au><au>Wang, Xiao</au><au>Brafman, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells</atitle><jtitle>BMC biology</jtitle><addtitle>BMC Biol</addtitle><date>2020-12-14</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>193</spage><epage>193</epage><pages>193-193</pages><artnum>193</artnum><issn>1741-7007</issn><eissn>1741-7007</eissn><abstract>Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>33317513</pmid><doi>10.1186/s12915-020-00929-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6131-2532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-7007
ispartof BMC biology, 2020-12, Vol.18 (1), p.193-193, Article 193
issn 1741-7007
1741-7007
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6ad608a62a4e4e7791fc2c26fe4ae154
source Publicly Available Content Database; PubMed
subjects Adenine
Adenine - chemistry
Adenosine
Adenosine - genetics
Adenosine - metabolism
Base Composition
Base editor
Cell cycle
Cell division
Conversion
CRISPR
CRISPR-Associated Protein 9 - genetics
CRISPR-Associated Protein 9 - metabolism
Deoxyribonucleic acid
DNA
DNA damage
Editing
Editors
Efficiency
Enrichment
Enzymes
Flow cytometry
Fluorescence
Gene Editing - methods
Gene loci
Gene targeting
Genes, Reporter
Genetic modification
Genome modification
Genomes
Green fluorescent protein
Human pluripotent stem cells
Humans
Identification and classification
Luminescent Proteins - chemistry
Methods
Microscopy
Multiplexing
Mutation
Nucleotides
Pluripotency
Pluripotent Stem Cells - metabolism
Populations
Proteins
Real time
Red Fluorescent Protein
Rot
Single-Cell Analysis
Stem cells
Stop codon
Transfection
title A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cas9-mediated%20adenosine%20transient%20reporter%20enables%20enrichment%20of%20ABE-targeted%20cells&rft.jtitle=BMC%20biology&rft.au=Brookhouser,%20Nicholas&rft.date=2020-12-14&rft.volume=18&rft.issue=1&rft.spage=193&rft.epage=193&rft.pages=193-193&rft.artnum=193&rft.issn=1741-7007&rft.eissn=1741-7007&rft_id=info:doi/10.1186/s12915-020-00929-7&rft_dat=%3Cgale_doaj_%3EA650501515%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c631t-991488dfa50449b0b22acb77c7dc8a7c87080a93ad9e6060ddf45736c92c2bf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471109948&rft_id=info:pmid/33317513&rft_galeid=A650501515&rfr_iscdi=true