Loading…
Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates
This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second for...
Saved in:
Published in: | Applied sciences 2021-11, Vol.11 (21), p.10115 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53 |
container_end_page | |
container_issue | 21 |
container_start_page | 10115 |
container_title | Applied sciences |
container_volume | 11 |
creator | da Silva Furlan, Laison Junio de Araujo, Matheus Tozo Brandi, Analice Costacurta de Almeida Cruz, Daniel Onofre de Souza, Leandro Franco |
description | This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers. |
doi_str_mv | 10.3390/app112110115 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6ad6dabc5645441c8405800bad703754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6ad6dabc5645441c8405800bad703754</doaj_id><sourcerecordid>2624326014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxRdRsNTe_AALXo3u_yRHqbYWKhaseFw2m1lNTbNxN7H47Y1WpHOZYd7jNwMPoXNKrjjPybVpW0oZpYRSeYRGjKQq4YKmxwfzKZrEuCFD5ZRnlIzQy23lHARoOjzzYdvXpqt8E3Hn8ZOvPwF3b4DnFUR47yN-8CXU2PmAZ7Xf4QK6HUCD1zuPVyaYuh7U1YCAeIZOnKkjTP76GD3P7tbT-2T5OF9Mb5aJ5SrtEseUBWlSpSQlYBzPc1VIxy1jBREFKMKZJCITKhs0RUuTC8FAqDwvqLOSj9Fizy292eg2VFsTvrQ3lf5d-PCqTegqW4NWplSlKaxUQgpBbSaIzAgpTJkSnkoxsC72rDb4jx5ipze-D83wvmaKCc4UoT-uy73LBh9jAPd_lRL9k4Q-TIJ_A7f3eSc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624326014</pqid></control><display><type>article</type><title>Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates</title><source>Publicly Available Content (ProQuest)</source><creator>da Silva Furlan, Laison Junio ; de Araujo, Matheus Tozo ; Brandi, Analice Costacurta ; de Almeida Cruz, Daniel Onofre ; de Souza, Leandro Franco</creator><creatorcontrib>da Silva Furlan, Laison Junio ; de Araujo, Matheus Tozo ; Brandi, Analice Costacurta ; de Almeida Cruz, Daniel Onofre ; de Souza, Leandro Franco</creatorcontrib><description>This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app112110115</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Constitutive models ; exact solution ; flow between two parallel plates ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Formulations ; Giesekus model ; high Weissenberg number ; high-order approximations ; Independent variables ; Mathematical models ; Newtonian fluids ; Non Newtonian fluids ; Numerical integration ; numerical solution ; Parallel plates ; Reynolds number ; Solvents ; Velocity ; Velocity distribution ; Viscoelastic fluids ; Viscoelasticity ; Viscosity</subject><ispartof>Applied sciences, 2021-11, Vol.11 (21), p.10115</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53</citedby><cites>FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53</cites><orcidid>0000-0002-1044-5228 ; 0000-0002-0213-1624 ; 0000-0002-0696-6629 ; 0000-0002-6145-9443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2624326014/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2624326014?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>da Silva Furlan, Laison Junio</creatorcontrib><creatorcontrib>de Araujo, Matheus Tozo</creatorcontrib><creatorcontrib>Brandi, Analice Costacurta</creatorcontrib><creatorcontrib>de Almeida Cruz, Daniel Onofre</creatorcontrib><creatorcontrib>de Souza, Leandro Franco</creatorcontrib><title>Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates</title><title>Applied sciences</title><description>This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers.</description><subject>Approximation</subject><subject>Constitutive models</subject><subject>exact solution</subject><subject>flow between two parallel plates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Formulations</subject><subject>Giesekus model</subject><subject>high Weissenberg number</subject><subject>high-order approximations</subject><subject>Independent variables</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Numerical integration</subject><subject>numerical solution</subject><subject>Parallel plates</subject><subject>Reynolds number</subject><subject>Solvents</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxRdRsNTe_AALXo3u_yRHqbYWKhaseFw2m1lNTbNxN7H47Y1WpHOZYd7jNwMPoXNKrjjPybVpW0oZpYRSeYRGjKQq4YKmxwfzKZrEuCFD5ZRnlIzQy23lHARoOjzzYdvXpqt8E3Hn8ZOvPwF3b4DnFUR47yN-8CXU2PmAZ7Xf4QK6HUCD1zuPVyaYuh7U1YCAeIZOnKkjTP76GD3P7tbT-2T5OF9Mb5aJ5SrtEseUBWlSpSQlYBzPc1VIxy1jBREFKMKZJCITKhs0RUuTC8FAqDwvqLOSj9Fizy292eg2VFsTvrQ3lf5d-PCqTegqW4NWplSlKaxUQgpBbSaIzAgpTJkSnkoxsC72rDb4jx5ipze-D83wvmaKCc4UoT-uy73LBh9jAPd_lRL9k4Q-TIJ_A7f3eSc</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>da Silva Furlan, Laison Junio</creator><creator>de Araujo, Matheus Tozo</creator><creator>Brandi, Analice Costacurta</creator><creator>de Almeida Cruz, Daniel Onofre</creator><creator>de Souza, Leandro Franco</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1044-5228</orcidid><orcidid>https://orcid.org/0000-0002-0213-1624</orcidid><orcidid>https://orcid.org/0000-0002-0696-6629</orcidid><orcidid>https://orcid.org/0000-0002-6145-9443</orcidid></search><sort><creationdate>20211101</creationdate><title>Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates</title><author>da Silva Furlan, Laison Junio ; de Araujo, Matheus Tozo ; Brandi, Analice Costacurta ; de Almeida Cruz, Daniel Onofre ; de Souza, Leandro Franco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Constitutive models</topic><topic>exact solution</topic><topic>flow between two parallel plates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Formulations</topic><topic>Giesekus model</topic><topic>high Weissenberg number</topic><topic>high-order approximations</topic><topic>Independent variables</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Numerical integration</topic><topic>numerical solution</topic><topic>Parallel plates</topic><topic>Reynolds number</topic><topic>Solvents</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva Furlan, Laison Junio</creatorcontrib><creatorcontrib>de Araujo, Matheus Tozo</creatorcontrib><creatorcontrib>Brandi, Analice Costacurta</creatorcontrib><creatorcontrib>de Almeida Cruz, Daniel Onofre</creatorcontrib><creatorcontrib>de Souza, Leandro Franco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva Furlan, Laison Junio</au><au>de Araujo, Matheus Tozo</au><au>Brandi, Analice Costacurta</au><au>de Almeida Cruz, Daniel Onofre</au><au>de Souza, Leandro Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates</atitle><jtitle>Applied sciences</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>21</issue><spage>10115</spage><pages>10115-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app112110115</doi><orcidid>https://orcid.org/0000-0002-1044-5228</orcidid><orcidid>https://orcid.org/0000-0002-0213-1624</orcidid><orcidid>https://orcid.org/0000-0002-0696-6629</orcidid><orcidid>https://orcid.org/0000-0002-6145-9443</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2021-11, Vol.11 (21), p.10115 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6ad6dabc5645441c8405800bad703754 |
source | Publicly Available Content (ProQuest) |
subjects | Approximation Constitutive models exact solution flow between two parallel plates Fluid dynamics Fluid flow Fluid mechanics Fluids Formulations Giesekus model high Weissenberg number high-order approximations Independent variables Mathematical models Newtonian fluids Non Newtonian fluids Numerical integration numerical solution Parallel plates Reynolds number Solvents Velocity Velocity distribution Viscoelastic fluids Viscoelasticity Viscosity |
title | Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20Formulations%20to%20Solve%20the%20Giesekus%20Model%20for%20Flow%20between%20Two%20Parallel%20Plates&rft.jtitle=Applied%20sciences&rft.au=da%20Silva%20Furlan,%20Laison%20Junio&rft.date=2021-11-01&rft.volume=11&rft.issue=21&rft.spage=10115&rft.pages=10115-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app112110115&rft_dat=%3Cproquest_doaj_%3E2624326014%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624326014&rft_id=info:pmid/&rfr_iscdi=true |