Loading…

Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates

This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second for...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-11, Vol.11 (21), p.10115
Main Authors: da Silva Furlan, Laison Junio, de Araujo, Matheus Tozo, Brandi, Analice Costacurta, de Almeida Cruz, Daniel Onofre, de Souza, Leandro Franco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53
cites cdi_FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53
container_end_page
container_issue 21
container_start_page 10115
container_title Applied sciences
container_volume 11
creator da Silva Furlan, Laison Junio
de Araujo, Matheus Tozo
Brandi, Analice Costacurta
de Almeida Cruz, Daniel Onofre
de Souza, Leandro Franco
description This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers.
doi_str_mv 10.3390/app112110115
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6ad6dabc5645441c8405800bad703754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6ad6dabc5645441c8405800bad703754</doaj_id><sourcerecordid>2624326014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxRdRsNTe_AALXo3u_yRHqbYWKhaseFw2m1lNTbNxN7H47Y1WpHOZYd7jNwMPoXNKrjjPybVpW0oZpYRSeYRGjKQq4YKmxwfzKZrEuCFD5ZRnlIzQy23lHARoOjzzYdvXpqt8E3Hn8ZOvPwF3b4DnFUR47yN-8CXU2PmAZ7Xf4QK6HUCD1zuPVyaYuh7U1YCAeIZOnKkjTP76GD3P7tbT-2T5OF9Mb5aJ5SrtEseUBWlSpSQlYBzPc1VIxy1jBREFKMKZJCITKhs0RUuTC8FAqDwvqLOSj9Fizy292eg2VFsTvrQ3lf5d-PCqTegqW4NWplSlKaxUQgpBbSaIzAgpTJkSnkoxsC72rDb4jx5ipze-D83wvmaKCc4UoT-uy73LBh9jAPd_lRL9k4Q-TIJ_A7f3eSc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624326014</pqid></control><display><type>article</type><title>Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates</title><source>Publicly Available Content (ProQuest)</source><creator>da Silva Furlan, Laison Junio ; de Araujo, Matheus Tozo ; Brandi, Analice Costacurta ; de Almeida Cruz, Daniel Onofre ; de Souza, Leandro Franco</creator><creatorcontrib>da Silva Furlan, Laison Junio ; de Araujo, Matheus Tozo ; Brandi, Analice Costacurta ; de Almeida Cruz, Daniel Onofre ; de Souza, Leandro Franco</creatorcontrib><description>This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app112110115</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Constitutive models ; exact solution ; flow between two parallel plates ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Formulations ; Giesekus model ; high Weissenberg number ; high-order approximations ; Independent variables ; Mathematical models ; Newtonian fluids ; Non Newtonian fluids ; Numerical integration ; numerical solution ; Parallel plates ; Reynolds number ; Solvents ; Velocity ; Velocity distribution ; Viscoelastic fluids ; Viscoelasticity ; Viscosity</subject><ispartof>Applied sciences, 2021-11, Vol.11 (21), p.10115</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53</citedby><cites>FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53</cites><orcidid>0000-0002-1044-5228 ; 0000-0002-0213-1624 ; 0000-0002-0696-6629 ; 0000-0002-6145-9443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2624326014/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2624326014?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>da Silva Furlan, Laison Junio</creatorcontrib><creatorcontrib>de Araujo, Matheus Tozo</creatorcontrib><creatorcontrib>Brandi, Analice Costacurta</creatorcontrib><creatorcontrib>de Almeida Cruz, Daniel Onofre</creatorcontrib><creatorcontrib>de Souza, Leandro Franco</creatorcontrib><title>Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates</title><title>Applied sciences</title><description>This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers.</description><subject>Approximation</subject><subject>Constitutive models</subject><subject>exact solution</subject><subject>flow between two parallel plates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Formulations</subject><subject>Giesekus model</subject><subject>high Weissenberg number</subject><subject>high-order approximations</subject><subject>Independent variables</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Numerical integration</subject><subject>numerical solution</subject><subject>Parallel plates</subject><subject>Reynolds number</subject><subject>Solvents</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxRdRsNTe_AALXo3u_yRHqbYWKhaseFw2m1lNTbNxN7H47Y1WpHOZYd7jNwMPoXNKrjjPybVpW0oZpYRSeYRGjKQq4YKmxwfzKZrEuCFD5ZRnlIzQy23lHARoOjzzYdvXpqt8E3Hn8ZOvPwF3b4DnFUR47yN-8CXU2PmAZ7Xf4QK6HUCD1zuPVyaYuh7U1YCAeIZOnKkjTP76GD3P7tbT-2T5OF9Mb5aJ5SrtEseUBWlSpSQlYBzPc1VIxy1jBREFKMKZJCITKhs0RUuTC8FAqDwvqLOSj9Fizy292eg2VFsTvrQ3lf5d-PCqTegqW4NWplSlKaxUQgpBbSaIzAgpTJkSnkoxsC72rDb4jx5ipze-D83wvmaKCc4UoT-uy73LBh9jAPd_lRL9k4Q-TIJ_A7f3eSc</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>da Silva Furlan, Laison Junio</creator><creator>de Araujo, Matheus Tozo</creator><creator>Brandi, Analice Costacurta</creator><creator>de Almeida Cruz, Daniel Onofre</creator><creator>de Souza, Leandro Franco</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1044-5228</orcidid><orcidid>https://orcid.org/0000-0002-0213-1624</orcidid><orcidid>https://orcid.org/0000-0002-0696-6629</orcidid><orcidid>https://orcid.org/0000-0002-6145-9443</orcidid></search><sort><creationdate>20211101</creationdate><title>Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates</title><author>da Silva Furlan, Laison Junio ; de Araujo, Matheus Tozo ; Brandi, Analice Costacurta ; de Almeida Cruz, Daniel Onofre ; de Souza, Leandro Franco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Constitutive models</topic><topic>exact solution</topic><topic>flow between two parallel plates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Formulations</topic><topic>Giesekus model</topic><topic>high Weissenberg number</topic><topic>high-order approximations</topic><topic>Independent variables</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Numerical integration</topic><topic>numerical solution</topic><topic>Parallel plates</topic><topic>Reynolds number</topic><topic>Solvents</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva Furlan, Laison Junio</creatorcontrib><creatorcontrib>de Araujo, Matheus Tozo</creatorcontrib><creatorcontrib>Brandi, Analice Costacurta</creatorcontrib><creatorcontrib>de Almeida Cruz, Daniel Onofre</creatorcontrib><creatorcontrib>de Souza, Leandro Franco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva Furlan, Laison Junio</au><au>de Araujo, Matheus Tozo</au><au>Brandi, Analice Costacurta</au><au>de Almeida Cruz, Daniel Onofre</au><au>de Souza, Leandro Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates</atitle><jtitle>Applied sciences</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>21</issue><spage>10115</spage><pages>10115-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app112110115</doi><orcidid>https://orcid.org/0000-0002-1044-5228</orcidid><orcidid>https://orcid.org/0000-0002-0213-1624</orcidid><orcidid>https://orcid.org/0000-0002-0696-6629</orcidid><orcidid>https://orcid.org/0000-0002-6145-9443</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2021-11, Vol.11 (21), p.10115
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6ad6dabc5645441c8405800bad703754
source Publicly Available Content (ProQuest)
subjects Approximation
Constitutive models
exact solution
flow between two parallel plates
Fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Formulations
Giesekus model
high Weissenberg number
high-order approximations
Independent variables
Mathematical models
Newtonian fluids
Non Newtonian fluids
Numerical integration
numerical solution
Parallel plates
Reynolds number
Solvents
Velocity
Velocity distribution
Viscoelastic fluids
Viscoelasticity
Viscosity
title Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20Formulations%20to%20Solve%20the%20Giesekus%20Model%20for%20Flow%20between%20Two%20Parallel%20Plates&rft.jtitle=Applied%20sciences&rft.au=da%20Silva%20Furlan,%20Laison%20Junio&rft.date=2021-11-01&rft.volume=11&rft.issue=21&rft.spage=10115&rft.pages=10115-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app112110115&rft_dat=%3Cproquest_doaj_%3E2624326014%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-f26ce5a766510eaf3996b5f3c22b04be60325048468f3961da9442e4699b1fc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624326014&rft_id=info:pmid/&rfr_iscdi=true