Loading…

γ-Cyclodextrin Metal-Organic Frameworks: Do Solvents Make a Difference?

Conventionally, methanol is the solvent of choice in the synthesis of gamma-cyclodextrin metal-organic frameworks (γ-CD-MOFs), but using ethanol as a replacement could allow for a more food-grade synthesis condition. Therefore, the aim of the study was to compare the γ-CD-MOFs synthesised with both...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-09, Vol.28 (19), p.6876
Main Authors: Oh, Jia X., Murray, Brent S., Mackie, Alan R., Ettelaie, Rammile, Sadeghpour, Amin, Frison, Ruggero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conventionally, methanol is the solvent of choice in the synthesis of gamma-cyclodextrin metal-organic frameworks (γ-CD-MOFs), but using ethanol as a replacement could allow for a more food-grade synthesis condition. Therefore, the aim of the study was to compare the γ-CD-MOFs synthesised with both methanol and ethanol. The γ-CD-MOFs were characterised by scanning electron microscopy (SEM), surface area and pore measurement, Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD). The encapsulation efficiency (EE) and loading capacity (LC) of the γ-CD-MOFs were also determined for curcumin, using methanol, ethanol and a mixture of the two as encapsulation solvent. It was found that γ-CD-MOFs synthesised by methanol and ethanol do not differ greatly, the most significant difference being the larger crystal size of γ-CD-MOFs crystallised from ethanol. However, the change in solvent significantly influenced the EE and LC of the crystals. The higher solubility of curcumin in ethanol reduced interactions with the γ-CD-MOFs and resulted in lowered EE and LC. This suggests that different solvents should be used to deliberately manipulate the EE and LC of target compounds for better use of γ-CD-MOFs as their encapsulating and delivery agents.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28196876