Loading…
Transcription Factors Targeted by miRNAs Regulating Smooth Muscle Cell Growth and Intimal Thickening after Vascular Injury
Neointima formation after percutaneous coronary intervention (PCI) is a manifestation of "phenotype switching" by vascular smooth muscle cells (SMC), a process that involves de-differentiation from a contractile quiescent phenotype to one that is richly synthetic. In response to injury, SM...
Saved in:
Published in: | International journal of molecular sciences 2019-10, Vol.20 (21), p.5445 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neointima formation after percutaneous coronary intervention (PCI) is a manifestation of "phenotype switching" by vascular smooth muscle cells (SMC), a process that involves de-differentiation from a contractile quiescent phenotype to one that is richly synthetic. In response to injury, SMCs migrate, proliferate, down-regulate SMC-specific differentiation genes, and later, can revert to the contractile phenotype. The vascular response to injury is regulated by microRNAs (or miRNAs), small non-coding RNAs that control gene expression. Interactions between miRNAs and transcription factors impact gene regulatory networks. This article briefly reviews the roles of a range of miRNAs in molecular and cellular processes that control intimal thickening, focusing mainly on transcription factors, some of which are encoded by immediate-early genes. Examples include Egr-1, junB, KLF4, KLF5, Elk-1, Ets-1, HMGB1, Smad1, Smad3, FoxO4, SRF, Rb, Sp1 and c-Myb. Such mechanistic information could inform the development of strategies that block SMC growth, neointima formation, and potentially overcome limitations of lasting efficacy following PCI. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms20215445 |