Loading…

HIF-1 inactivation empowers HIF-2 to drive hypoxia adaptation in aggressive forms of medulloblastoma

Medulloblastoma (MB) is the most prevalent brain cancer in children. Four subgroups of MB have been identified; of these, Group 3 is the most metastatic. Its genetics and biology remain less clear than the other groups, and it has a poor prognosis and few effective treatments available. Tumor hypoxi...

Full description

Saved in:
Bibliographic Details
Published in:Cell death discovery 2024-07, Vol.10 (1), p.338-12, Article 338
Main Authors: Contenti, J., Guo, Y., Larcher, M., Mirabal-Ortega, L., Rouleau, M., Irondelle, M., Tiroille, V., Mazzu, A., Duranton-Tanneur, V., Pedeutour, F., Ben-Sahra, I., Lago, C., Leva, G., Tiberi, L., Robert, G., Pouponnot, C., Bost, F., Mazure, N. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c412t-26155792a525904d4f6336a1aaaa6312d463009ff86af5ac267bf5b42281939f3
container_end_page 12
container_issue 1
container_start_page 338
container_title Cell death discovery
container_volume 10
creator Contenti, J.
Guo, Y.
Larcher, M.
Mirabal-Ortega, L.
Rouleau, M.
Irondelle, M.
Tiroille, V.
Mazzu, A.
Duranton-Tanneur, V.
Pedeutour, F.
Ben-Sahra, I.
Lago, C.
Leva, G.
Tiberi, L.
Robert, G.
Pouponnot, C.
Bost, F.
Mazure, N. M.
description Medulloblastoma (MB) is the most prevalent brain cancer in children. Four subgroups of MB have been identified; of these, Group 3 is the most metastatic. Its genetics and biology remain less clear than the other groups, and it has a poor prognosis and few effective treatments available. Tumor hypoxia and the resulting metabolism are known to be important in the growth and survival of tumors but, to date, have been only minimally explored in MB. Here we show that Group 3 MB tumors do not depend on the canonical transcription factor hypoxia-inducible factor-1α (HIF-1α) to mount an adaptive response to hypoxia. We discovered that HIF-1α is rendered inactive either through post-translational methylation, preventing its nuclear localization specifically in Group 3 MB, or by a low expression that prevents modulation of HIF-target genes. Strikingly, we found that HIF-2 takes over the role of HIF-1 in the nucleus and promotes the activation of hypoxia-dependent anabolic pathways. The exclusion of HIF-1 from the nucleus in Group 3 MB cells enhances the reliance on HIF-2’s transcriptional role, making it a viable target for potential anticancer strategies. By combining pharmacological inhibition of HIF-2α with the use of metformin, a mitochondrial complex I inhibitor to block respiration, we effectively induced Group 3 MB cell death, surpassing the effectiveness observed in Non-Group 3 MB cells. Overall, the unique dependence of MB cells, but not normal cells, on HIF-2-mediated anabolic metabolism presents an appealing therapeutic opportunity for treating Group 3 MB patients with minimal toxicity.
doi_str_mv 10.1038/s41420-024-02100-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6b0946adfba14408a97ab70bf63ae8b8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6b0946adfba14408a97ab70bf63ae8b8</doaj_id><sourcerecordid>3084105441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-26155792a525904d4f6336a1aaaa6312d463009ff86af5ac267bf5b42281939f3</originalsourceid><addsrcrecordid>eNp9ks1u1DAURiMEolXpC7BAkdjAInD9n6xQVVFmpJHYwNq6SewZj5J4sJMpfXucSSltF8SKEvken2tbX5a9JfCJACs_R044hQIoTy8BKMSL7JyCKAuliHz56P8su4xxDwBEKK5K9jo7YxXwUkh-nrWr9U1BcjdgM7ojjs4PuekP_taEmM81mo8-b4M7mnx3d_C_HebY4mFcUDfkuN0GE-MMWB_6mHub96adus7XHcbR9_gme2Wxi-by_nuR_bz5-uN6VWy-f1tfX22KhhM6FlQSIVRFUVCRNthyKxmTSDA9khHacskAKmtLiVZgQ6Wqrag5pSWpWGXZRbZevK3HvT4E12O40x6dPk34sNUYRtd0RssaKi6xtTUSzqHESmGtoE4t0ZR1mVxfFtdhqtNxGjOMAbsn0qeVwe301h81IVRWkvBk-LgYds_Wra42ep4DriQIpY4ksR_uuwX_azJx1L2Ljek6HIyfomZQJjgNkdD3z9C9n8KQ7vVEERCcz0K6UE3wMQZjH3ZAQM8B0kuAdAqQPgVIz-p3j8_8sORvXBLAFiCm0rA14V_v_2j_AOBkzto</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084105441</pqid></control><display><type>article</type><title>HIF-1 inactivation empowers HIF-2 to drive hypoxia adaptation in aggressive forms of medulloblastoma</title><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Contenti, J. ; Guo, Y. ; Larcher, M. ; Mirabal-Ortega, L. ; Rouleau, M. ; Irondelle, M. ; Tiroille, V. ; Mazzu, A. ; Duranton-Tanneur, V. ; Pedeutour, F. ; Ben-Sahra, I. ; Lago, C. ; Leva, G. ; Tiberi, L. ; Robert, G. ; Pouponnot, C. ; Bost, F. ; Mazure, N. M.</creator><creatorcontrib>Contenti, J. ; Guo, Y. ; Larcher, M. ; Mirabal-Ortega, L. ; Rouleau, M. ; Irondelle, M. ; Tiroille, V. ; Mazzu, A. ; Duranton-Tanneur, V. ; Pedeutour, F. ; Ben-Sahra, I. ; Lago, C. ; Leva, G. ; Tiberi, L. ; Robert, G. ; Pouponnot, C. ; Bost, F. ; Mazure, N. M.</creatorcontrib><description>Medulloblastoma (MB) is the most prevalent brain cancer in children. Four subgroups of MB have been identified; of these, Group 3 is the most metastatic. Its genetics and biology remain less clear than the other groups, and it has a poor prognosis and few effective treatments available. Tumor hypoxia and the resulting metabolism are known to be important in the growth and survival of tumors but, to date, have been only minimally explored in MB. Here we show that Group 3 MB tumors do not depend on the canonical transcription factor hypoxia-inducible factor-1α (HIF-1α) to mount an adaptive response to hypoxia. We discovered that HIF-1α is rendered inactive either through post-translational methylation, preventing its nuclear localization specifically in Group 3 MB, or by a low expression that prevents modulation of HIF-target genes. Strikingly, we found that HIF-2 takes over the role of HIF-1 in the nucleus and promotes the activation of hypoxia-dependent anabolic pathways. The exclusion of HIF-1 from the nucleus in Group 3 MB cells enhances the reliance on HIF-2’s transcriptional role, making it a viable target for potential anticancer strategies. By combining pharmacological inhibition of HIF-2α with the use of metformin, a mitochondrial complex I inhibitor to block respiration, we effectively induced Group 3 MB cell death, surpassing the effectiveness observed in Non-Group 3 MB cells. Overall, the unique dependence of MB cells, but not normal cells, on HIF-2-mediated anabolic metabolism presents an appealing therapeutic opportunity for treating Group 3 MB patients with minimal toxicity.</description><identifier>ISSN: 2058-7716</identifier><identifier>EISSN: 2058-7716</identifier><identifier>DOI: 10.1038/s41420-024-02100-5</identifier><identifier>PMID: 39048564</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/53/2423 ; 631/443/319/320 ; 631/67/1857 ; 631/67/2332 ; 631/80/82/23 ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cancer ; Cell Biology ; Cell Cycle Analysis ; Cell death ; DNA methylation ; Electron transport chain ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-inducible factor 1a ; Life Sciences ; Localization ; Medical prognosis ; Medulloblastoma ; Metabolism ; Metastases ; Metformin ; NADH-ubiquinone oxidoreductase ; Post-translation ; Stem Cells ; Toxicity ; Tumors</subject><ispartof>Cell death discovery, 2024-07, Vol.10 (1), p.338-12, Article 338</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c412t-26155792a525904d4f6336a1aaaa6312d463009ff86af5ac267bf5b42281939f3</cites><orcidid>0000-0002-5983-3782 ; 0000-0001-9333-4162 ; 0009-0007-8775-1614 ; 0000-0003-1350-7161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39048564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04760577$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Contenti, J.</creatorcontrib><creatorcontrib>Guo, Y.</creatorcontrib><creatorcontrib>Larcher, M.</creatorcontrib><creatorcontrib>Mirabal-Ortega, L.</creatorcontrib><creatorcontrib>Rouleau, M.</creatorcontrib><creatorcontrib>Irondelle, M.</creatorcontrib><creatorcontrib>Tiroille, V.</creatorcontrib><creatorcontrib>Mazzu, A.</creatorcontrib><creatorcontrib>Duranton-Tanneur, V.</creatorcontrib><creatorcontrib>Pedeutour, F.</creatorcontrib><creatorcontrib>Ben-Sahra, I.</creatorcontrib><creatorcontrib>Lago, C.</creatorcontrib><creatorcontrib>Leva, G.</creatorcontrib><creatorcontrib>Tiberi, L.</creatorcontrib><creatorcontrib>Robert, G.</creatorcontrib><creatorcontrib>Pouponnot, C.</creatorcontrib><creatorcontrib>Bost, F.</creatorcontrib><creatorcontrib>Mazure, N. M.</creatorcontrib><title>HIF-1 inactivation empowers HIF-2 to drive hypoxia adaptation in aggressive forms of medulloblastoma</title><title>Cell death discovery</title><addtitle>Cell Death Discov</addtitle><addtitle>Cell Death Discov</addtitle><description>Medulloblastoma (MB) is the most prevalent brain cancer in children. Four subgroups of MB have been identified; of these, Group 3 is the most metastatic. Its genetics and biology remain less clear than the other groups, and it has a poor prognosis and few effective treatments available. Tumor hypoxia and the resulting metabolism are known to be important in the growth and survival of tumors but, to date, have been only minimally explored in MB. Here we show that Group 3 MB tumors do not depend on the canonical transcription factor hypoxia-inducible factor-1α (HIF-1α) to mount an adaptive response to hypoxia. We discovered that HIF-1α is rendered inactive either through post-translational methylation, preventing its nuclear localization specifically in Group 3 MB, or by a low expression that prevents modulation of HIF-target genes. Strikingly, we found that HIF-2 takes over the role of HIF-1 in the nucleus and promotes the activation of hypoxia-dependent anabolic pathways. The exclusion of HIF-1 from the nucleus in Group 3 MB cells enhances the reliance on HIF-2’s transcriptional role, making it a viable target for potential anticancer strategies. By combining pharmacological inhibition of HIF-2α with the use of metformin, a mitochondrial complex I inhibitor to block respiration, we effectively induced Group 3 MB cell death, surpassing the effectiveness observed in Non-Group 3 MB cells. Overall, the unique dependence of MB cells, but not normal cells, on HIF-2-mediated anabolic metabolism presents an appealing therapeutic opportunity for treating Group 3 MB patients with minimal toxicity.</description><subject>631/154/53/2423</subject><subject>631/443/319/320</subject><subject>631/67/1857</subject><subject>631/67/2332</subject><subject>631/80/82/23</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>DNA methylation</subject><subject>Electron transport chain</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Medical prognosis</subject><subject>Medulloblastoma</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Metformin</subject><subject>NADH-ubiquinone oxidoreductase</subject><subject>Post-translation</subject><subject>Stem Cells</subject><subject>Toxicity</subject><subject>Tumors</subject><issn>2058-7716</issn><issn>2058-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAURiMEolXpC7BAkdjAInD9n6xQVVFmpJHYwNq6SewZj5J4sJMpfXucSSltF8SKEvken2tbX5a9JfCJACs_R044hQIoTy8BKMSL7JyCKAuliHz56P8su4xxDwBEKK5K9jo7YxXwUkh-nrWr9U1BcjdgM7ojjs4PuekP_taEmM81mo8-b4M7mnx3d_C_HebY4mFcUDfkuN0GE-MMWB_6mHub96adus7XHcbR9_gme2Wxi-by_nuR_bz5-uN6VWy-f1tfX22KhhM6FlQSIVRFUVCRNthyKxmTSDA9khHacskAKmtLiVZgQ6Wqrag5pSWpWGXZRbZevK3HvT4E12O40x6dPk34sNUYRtd0RssaKi6xtTUSzqHESmGtoE4t0ZR1mVxfFtdhqtNxGjOMAbsn0qeVwe301h81IVRWkvBk-LgYds_Wra42ep4DriQIpY4ksR_uuwX_azJx1L2Ljek6HIyfomZQJjgNkdD3z9C9n8KQ7vVEERCcz0K6UE3wMQZjH3ZAQM8B0kuAdAqQPgVIz-p3j8_8sORvXBLAFiCm0rA14V_v_2j_AOBkzto</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>Contenti, J.</creator><creator>Guo, Y.</creator><creator>Larcher, M.</creator><creator>Mirabal-Ortega, L.</creator><creator>Rouleau, M.</creator><creator>Irondelle, M.</creator><creator>Tiroille, V.</creator><creator>Mazzu, A.</creator><creator>Duranton-Tanneur, V.</creator><creator>Pedeutour, F.</creator><creator>Ben-Sahra, I.</creator><creator>Lago, C.</creator><creator>Leva, G.</creator><creator>Tiberi, L.</creator><creator>Robert, G.</creator><creator>Pouponnot, C.</creator><creator>Bost, F.</creator><creator>Mazure, N. M.</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5983-3782</orcidid><orcidid>https://orcid.org/0000-0001-9333-4162</orcidid><orcidid>https://orcid.org/0009-0007-8775-1614</orcidid><orcidid>https://orcid.org/0000-0003-1350-7161</orcidid></search><sort><creationdate>20240724</creationdate><title>HIF-1 inactivation empowers HIF-2 to drive hypoxia adaptation in aggressive forms of medulloblastoma</title><author>Contenti, J. ; Guo, Y. ; Larcher, M. ; Mirabal-Ortega, L. ; Rouleau, M. ; Irondelle, M. ; Tiroille, V. ; Mazzu, A. ; Duranton-Tanneur, V. ; Pedeutour, F. ; Ben-Sahra, I. ; Lago, C. ; Leva, G. ; Tiberi, L. ; Robert, G. ; Pouponnot, C. ; Bost, F. ; Mazure, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-26155792a525904d4f6336a1aaaa6312d463009ff86af5ac267bf5b42281939f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/154/53/2423</topic><topic>631/443/319/320</topic><topic>631/67/1857</topic><topic>631/67/2332</topic><topic>631/80/82/23</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>DNA methylation</topic><topic>Electron transport chain</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Medical prognosis</topic><topic>Medulloblastoma</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Metformin</topic><topic>NADH-ubiquinone oxidoreductase</topic><topic>Post-translation</topic><topic>Stem Cells</topic><topic>Toxicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contenti, J.</creatorcontrib><creatorcontrib>Guo, Y.</creatorcontrib><creatorcontrib>Larcher, M.</creatorcontrib><creatorcontrib>Mirabal-Ortega, L.</creatorcontrib><creatorcontrib>Rouleau, M.</creatorcontrib><creatorcontrib>Irondelle, M.</creatorcontrib><creatorcontrib>Tiroille, V.</creatorcontrib><creatorcontrib>Mazzu, A.</creatorcontrib><creatorcontrib>Duranton-Tanneur, V.</creatorcontrib><creatorcontrib>Pedeutour, F.</creatorcontrib><creatorcontrib>Ben-Sahra, I.</creatorcontrib><creatorcontrib>Lago, C.</creatorcontrib><creatorcontrib>Leva, G.</creatorcontrib><creatorcontrib>Tiberi, L.</creatorcontrib><creatorcontrib>Robert, G.</creatorcontrib><creatorcontrib>Pouponnot, C.</creatorcontrib><creatorcontrib>Bost, F.</creatorcontrib><creatorcontrib>Mazure, N. M.</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell death discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contenti, J.</au><au>Guo, Y.</au><au>Larcher, M.</au><au>Mirabal-Ortega, L.</au><au>Rouleau, M.</au><au>Irondelle, M.</au><au>Tiroille, V.</au><au>Mazzu, A.</au><au>Duranton-Tanneur, V.</au><au>Pedeutour, F.</au><au>Ben-Sahra, I.</au><au>Lago, C.</au><au>Leva, G.</au><au>Tiberi, L.</au><au>Robert, G.</au><au>Pouponnot, C.</au><au>Bost, F.</au><au>Mazure, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIF-1 inactivation empowers HIF-2 to drive hypoxia adaptation in aggressive forms of medulloblastoma</atitle><jtitle>Cell death discovery</jtitle><stitle>Cell Death Discov</stitle><addtitle>Cell Death Discov</addtitle><date>2024-07-24</date><risdate>2024</risdate><volume>10</volume><issue>1</issue><spage>338</spage><epage>12</epage><pages>338-12</pages><artnum>338</artnum><issn>2058-7716</issn><eissn>2058-7716</eissn><abstract>Medulloblastoma (MB) is the most prevalent brain cancer in children. Four subgroups of MB have been identified; of these, Group 3 is the most metastatic. Its genetics and biology remain less clear than the other groups, and it has a poor prognosis and few effective treatments available. Tumor hypoxia and the resulting metabolism are known to be important in the growth and survival of tumors but, to date, have been only minimally explored in MB. Here we show that Group 3 MB tumors do not depend on the canonical transcription factor hypoxia-inducible factor-1α (HIF-1α) to mount an adaptive response to hypoxia. We discovered that HIF-1α is rendered inactive either through post-translational methylation, preventing its nuclear localization specifically in Group 3 MB, or by a low expression that prevents modulation of HIF-target genes. Strikingly, we found that HIF-2 takes over the role of HIF-1 in the nucleus and promotes the activation of hypoxia-dependent anabolic pathways. The exclusion of HIF-1 from the nucleus in Group 3 MB cells enhances the reliance on HIF-2’s transcriptional role, making it a viable target for potential anticancer strategies. By combining pharmacological inhibition of HIF-2α with the use of metformin, a mitochondrial complex I inhibitor to block respiration, we effectively induced Group 3 MB cell death, surpassing the effectiveness observed in Non-Group 3 MB cells. Overall, the unique dependence of MB cells, but not normal cells, on HIF-2-mediated anabolic metabolism presents an appealing therapeutic opportunity for treating Group 3 MB patients with minimal toxicity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39048564</pmid><doi>10.1038/s41420-024-02100-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5983-3782</orcidid><orcidid>https://orcid.org/0000-0001-9333-4162</orcidid><orcidid>https://orcid.org/0009-0007-8775-1614</orcidid><orcidid>https://orcid.org/0000-0003-1350-7161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7716
ispartof Cell death discovery, 2024-07, Vol.10 (1), p.338-12, Article 338
issn 2058-7716
2058-7716
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6b0946adfba14408a97ab70bf63ae8b8
source PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/154/53/2423
631/443/319/320
631/67/1857
631/67/2332
631/80/82/23
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cancer
Cell Biology
Cell Cycle Analysis
Cell death
DNA methylation
Electron transport chain
Hypoxia
Hypoxia-inducible factor 1
Hypoxia-inducible factor 1a
Life Sciences
Localization
Medical prognosis
Medulloblastoma
Metabolism
Metastases
Metformin
NADH-ubiquinone oxidoreductase
Post-translation
Stem Cells
Toxicity
Tumors
title HIF-1 inactivation empowers HIF-2 to drive hypoxia adaptation in aggressive forms of medulloblastoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIF-1%20inactivation%20empowers%20HIF-2%20to%20drive%20hypoxia%20adaptation%20in%20aggressive%20forms%20of%20medulloblastoma&rft.jtitle=Cell%20death%20discovery&rft.au=Contenti,%20J.&rft.date=2024-07-24&rft.volume=10&rft.issue=1&rft.spage=338&rft.epage=12&rft.pages=338-12&rft.artnum=338&rft.issn=2058-7716&rft.eissn=2058-7716&rft_id=info:doi/10.1038/s41420-024-02100-5&rft_dat=%3Cproquest_doaj_%3E3084105441%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-26155792a525904d4f6336a1aaaa6312d463009ff86af5ac267bf5b42281939f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084105441&rft_id=info:pmid/39048564&rfr_iscdi=true