Loading…

On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation

Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear sel...

Full description

Saved in:
Bibliographic Details
Published in:Computation 2020-09, Vol.8 (3), p.65
Main Author: Sinkala, Winter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3
container_end_page
container_issue 3
container_start_page 65
container_title Computation
container_volume 8
creator Sinkala, Winter
description Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.
doi_str_mv 10.3390/computation8030065
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b</doaj_id><sourcerecordid>oai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3</originalsourceid><addsrcrecordid>eNplkM1OwzAQhC0EEhX0BTjlBQKbOPHPEapSKhX1QDlHa2dNU9K42Cmob09_EEJiL7uanfkOw9hNBreca7izfr3Z9tg3vlPAAUR5xgY5SJ3yTMvzP_clG8a4gv3ojKscBmwx75J-ScmEOgpHROJdMu1c0zU9tbvkGbtdMvJdpPB5-s_wKx5Mh9hDi_Y9fbFL31JMxh_bo-WaXThsIw1_9hV7fRwvRk_pbD6Zju5nqeWg-lQQCG4LrjSKmgzWTgutrOZ1XgtOxAWXFnNpClQEJTqJVkuConalLKXjV2x64tYeV9UmNGsMu8pjUx0FH94qDH1jW6qEyYys0ch9tBBlYZQoBKBR3GoFYPas_MSywccYyP3yMqgONVf_a-bf5sZ0FQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation</title><source>Publicly Available Content Database</source><creator>Sinkala, Winter</creator><creatorcontrib>Sinkala, Winter</creatorcontrib><description>Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.</description><identifier>ISSN: 2079-3197</identifier><identifier>EISSN: 2079-3197</identifier><identifier>DOI: 10.3390/computation8030065</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>black-scholes equation ; conservation law ; lie symmetry ; multiplier method ; nonlinear self-adjointness</subject><ispartof>Computation, 2020-09, Vol.8 (3), p.65</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sinkala, Winter</creatorcontrib><title>On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation</title><title>Computation</title><description>Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.</description><subject>black-scholes equation</subject><subject>conservation law</subject><subject>lie symmetry</subject><subject>multiplier method</subject><subject>nonlinear self-adjointness</subject><issn>2079-3197</issn><issn>2079-3197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkM1OwzAQhC0EEhX0BTjlBQKbOPHPEapSKhX1QDlHa2dNU9K42Cmob09_EEJiL7uanfkOw9hNBreca7izfr3Z9tg3vlPAAUR5xgY5SJ3yTMvzP_clG8a4gv3ojKscBmwx75J-ScmEOgpHROJdMu1c0zU9tbvkGbtdMvJdpPB5-s_wKx5Mh9hDi_Y9fbFL31JMxh_bo-WaXThsIw1_9hV7fRwvRk_pbD6Zju5nqeWg-lQQCG4LrjSKmgzWTgutrOZ1XgtOxAWXFnNpClQEJTqJVkuConalLKXjV2x64tYeV9UmNGsMu8pjUx0FH94qDH1jW6qEyYys0ch9tBBlYZQoBKBR3GoFYPas_MSywccYyP3yMqgONVf_a-bf5sZ0FQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Sinkala, Winter</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200901</creationdate><title>On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation</title><author>Sinkala, Winter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>black-scholes equation</topic><topic>conservation law</topic><topic>lie symmetry</topic><topic>multiplier method</topic><topic>nonlinear self-adjointness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinkala, Winter</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinkala, Winter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation</atitle><jtitle>Computation</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>8</volume><issue>3</issue><spage>65</spage><pages>65-</pages><issn>2079-3197</issn><eissn>2079-3197</eissn><abstract>Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.</abstract><pub>MDPI AG</pub><doi>10.3390/computation8030065</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-3197
ispartof Computation, 2020-09, Vol.8 (3), p.65
issn 2079-3197
2079-3197
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b
source Publicly Available Content Database
subjects black-scholes equation
conservation law
lie symmetry
multiplier method
nonlinear self-adjointness
title On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Generation%20of%20Infinitely%20Many%20Conservation%20Laws%20of%20the%20Black-Scholes%20Equation&rft.jtitle=Computation&rft.au=Sinkala,%20Winter&rft.date=2020-09-01&rft.volume=8&rft.issue=3&rft.spage=65&rft.pages=65-&rft.issn=2079-3197&rft.eissn=2079-3197&rft_id=info:doi/10.3390/computation8030065&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true