Loading…
On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation
Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear sel...
Saved in:
Published in: | Computation 2020-09, Vol.8 (3), p.65 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3 |
container_end_page | |
container_issue | 3 |
container_start_page | 65 |
container_title | Computation |
container_volume | 8 |
creator | Sinkala, Winter |
description | Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation. |
doi_str_mv | 10.3390/computation8030065 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b</doaj_id><sourcerecordid>oai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3</originalsourceid><addsrcrecordid>eNplkM1OwzAQhC0EEhX0BTjlBQKbOPHPEapSKhX1QDlHa2dNU9K42Cmob09_EEJiL7uanfkOw9hNBreca7izfr3Z9tg3vlPAAUR5xgY5SJ3yTMvzP_clG8a4gv3ojKscBmwx75J-ScmEOgpHROJdMu1c0zU9tbvkGbtdMvJdpPB5-s_wKx5Mh9hDi_Y9fbFL31JMxh_bo-WaXThsIw1_9hV7fRwvRk_pbD6Zju5nqeWg-lQQCG4LrjSKmgzWTgutrOZ1XgtOxAWXFnNpClQEJTqJVkuConalLKXjV2x64tYeV9UmNGsMu8pjUx0FH94qDH1jW6qEyYys0ch9tBBlYZQoBKBR3GoFYPas_MSywccYyP3yMqgONVf_a-bf5sZ0FQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation</title><source>Publicly Available Content Database</source><creator>Sinkala, Winter</creator><creatorcontrib>Sinkala, Winter</creatorcontrib><description>Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.</description><identifier>ISSN: 2079-3197</identifier><identifier>EISSN: 2079-3197</identifier><identifier>DOI: 10.3390/computation8030065</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>black-scholes equation ; conservation law ; lie symmetry ; multiplier method ; nonlinear self-adjointness</subject><ispartof>Computation, 2020-09, Vol.8 (3), p.65</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sinkala, Winter</creatorcontrib><title>On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation</title><title>Computation</title><description>Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.</description><subject>black-scholes equation</subject><subject>conservation law</subject><subject>lie symmetry</subject><subject>multiplier method</subject><subject>nonlinear self-adjointness</subject><issn>2079-3197</issn><issn>2079-3197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkM1OwzAQhC0EEhX0BTjlBQKbOPHPEapSKhX1QDlHa2dNU9K42Cmob09_EEJiL7uanfkOw9hNBreca7izfr3Z9tg3vlPAAUR5xgY5SJ3yTMvzP_clG8a4gv3ojKscBmwx75J-ScmEOgpHROJdMu1c0zU9tbvkGbtdMvJdpPB5-s_wKx5Mh9hDi_Y9fbFL31JMxh_bo-WaXThsIw1_9hV7fRwvRk_pbD6Zju5nqeWg-lQQCG4LrjSKmgzWTgutrOZ1XgtOxAWXFnNpClQEJTqJVkuConalLKXjV2x64tYeV9UmNGsMu8pjUx0FH94qDH1jW6qEyYys0ch9tBBlYZQoBKBR3GoFYPas_MSywccYyP3yMqgONVf_a-bf5sZ0FQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Sinkala, Winter</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200901</creationdate><title>On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation</title><author>Sinkala, Winter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>black-scholes equation</topic><topic>conservation law</topic><topic>lie symmetry</topic><topic>multiplier method</topic><topic>nonlinear self-adjointness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinkala, Winter</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinkala, Winter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation</atitle><jtitle>Computation</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>8</volume><issue>3</issue><spage>65</spage><pages>65-</pages><issn>2079-3197</issn><eissn>2079-3197</eissn><abstract>Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.</abstract><pub>MDPI AG</pub><doi>10.3390/computation8030065</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-3197 |
ispartof | Computation, 2020-09, Vol.8 (3), p.65 |
issn | 2079-3197 2079-3197 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b |
source | Publicly Available Content Database |
subjects | black-scholes equation conservation law lie symmetry multiplier method nonlinear self-adjointness |
title | On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Generation%20of%20Infinitely%20Many%20Conservation%20Laws%20of%20the%20Black-Scholes%20Equation&rft.jtitle=Computation&rft.au=Sinkala,%20Winter&rft.date=2020-09-01&rft.volume=8&rft.issue=3&rft.spage=65&rft.pages=65-&rft.issn=2079-3197&rft.eissn=2079-3197&rft_id=info:doi/10.3390/computation8030065&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_6b1b7dab7f574654b86460ab83c9800b%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-6e063c4389a6debadf9698c93d2d63ee3637ca27b4a8e05af7ac97e04df5757f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |