Loading…
Nano- and microstructured materials for in vitro studies of the physiology of vascular cells
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to inv...
Saved in:
Published in: | Beilstein journal of nanotechnology 2016, Vol.7 (1), p.1620-1641 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-cb7cc9605e3db4309f49ef0b35c1ee8af7272ecdbe2015e5fa0d40825d5da50f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-cb7cc9605e3db4309f49ef0b35c1ee8af7272ecdbe2015e5fa0d40825d5da50f3 |
container_end_page | 1641 |
container_issue | 1 |
container_start_page | 1620 |
container_title | Beilstein journal of nanotechnology |
container_volume | 7 |
creator | Greiner, Alexandra M Sales, Adria Chen, Hao Biela, Sarah A Kaufmann, Dieter Kemkemer, Ralf |
description | The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies. |
doi_str_mv | 10.3762/bjnano.7.155 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6b28ce2979c44908ade4bd677294d848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6b28ce2979c44908ade4bd677294d848</doaj_id><sourcerecordid>1863696995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-cb7cc9605e3db4309f49ef0b35c1ee8af7272ecdbe2015e5fa0d40825d5da50f3</originalsourceid><addsrcrecordid>eNpdkk1rGzEQhpfS0IQkt56LoJceuo4-V9KlUELaBkJ6aW8FoZVmbZn1ypW0Bv_7yHUSkuoiaeadB2nmbZr3BC-Y7OhVv57sFBdyQYR405xRonHLqerevjifNpc5r3FdHFOl1bvmlCrCuSD0rPlzX-tbZCePNsGlmEuaXZkT1LstkIIdMxpiQmFCu1BSRLnMPkBGcUBlBWi72ucQx7jcHyI7m9082oQcjGO-aE6GWg-Xj_t58_vbza_rH-3dz--311_vWselKq3rpXO6wwKY7znDeuAaBtwz4QiAsoOkkoLzPVBMBIjBYs-xosILbwUe2Hlze-T6aNdmm8LGpr2JNph_gZiWxqYS3Aim66lyQLXUjnONlfXAe99JSTX3iqvK-nJkbed-A97BVJIdX0FfZ6awMsu4M4Iy1UlcAZ8eASn-nSEXswn50A47QZyzIapjne60FlX68T_pOs5pqq0ypKYxE5iSqvp8VB3GkxMMz48h2BxcYI4uMNJUF1T5h5cfeBY_zZw9AIFxsAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953035021</pqid></control><display><type>article</type><title>Nano- and microstructured materials for in vitro studies of the physiology of vascular cells</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed</source><source>Free Full-Text Journals in Chemistry</source><creator>Greiner, Alexandra M ; Sales, Adria ; Chen, Hao ; Biela, Sarah A ; Kaufmann, Dieter ; Kemkemer, Ralf</creator><creatorcontrib>Greiner, Alexandra M ; Sales, Adria ; Chen, Hao ; Biela, Sarah A ; Kaufmann, Dieter ; Kemkemer, Ralf</creatorcontrib><description>The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.</description><identifier>ISSN: 2190-4286</identifier><identifier>EISSN: 2190-4286</identifier><identifier>DOI: 10.3762/bjnano.7.155</identifier><identifier>PMID: 28144512</identifier><language>eng</language><publisher>Germany: Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</publisher><subject>Adhesives ; Biology ; Cell adhesion & migration ; Chemical composition ; Endothelial cells ; Endothelium ; Extracellular matrix ; fabrication methods ; Gene expression ; Materials science ; materials selection ; Mechanical properties ; Microscopy ; Muscles ; nano- and micro-topography ; Nanoscience ; Nanostructure ; Nanotechnology ; Physical properties ; Plasma etching ; Polymerization ; Review ; Silicon wafers ; Smooth muscle ; Surgical implants ; Topography ; Transplants & implants ; vascular endothelial cells ; vascular smooth muscle cells</subject><ispartof>Beilstein journal of nanotechnology, 2016, Vol.7 (1), p.1620-1641</ispartof><rights>Copyright © 2016, Greiner et al.; licensee Beilstein-Institut. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2016, Greiner et al. 2016 Greiner et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-cb7cc9605e3db4309f49ef0b35c1ee8af7272ecdbe2015e5fa0d40825d5da50f3</citedby><cites>FETCH-LOGICAL-c478t-cb7cc9605e3db4309f49ef0b35c1ee8af7272ecdbe2015e5fa0d40825d5da50f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1953035021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1953035021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,25753,27923,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28144512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greiner, Alexandra M</creatorcontrib><creatorcontrib>Sales, Adria</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Biela, Sarah A</creatorcontrib><creatorcontrib>Kaufmann, Dieter</creatorcontrib><creatorcontrib>Kemkemer, Ralf</creatorcontrib><title>Nano- and microstructured materials for in vitro studies of the physiology of vascular cells</title><title>Beilstein journal of nanotechnology</title><addtitle>Beilstein J Nanotechnol</addtitle><description>The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.</description><subject>Adhesives</subject><subject>Biology</subject><subject>Cell adhesion & migration</subject><subject>Chemical composition</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Extracellular matrix</subject><subject>fabrication methods</subject><subject>Gene expression</subject><subject>Materials science</subject><subject>materials selection</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Muscles</subject><subject>nano- and micro-topography</subject><subject>Nanoscience</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Physical properties</subject><subject>Plasma etching</subject><subject>Polymerization</subject><subject>Review</subject><subject>Silicon wafers</subject><subject>Smooth muscle</subject><subject>Surgical implants</subject><subject>Topography</subject><subject>Transplants & implants</subject><subject>vascular endothelial cells</subject><subject>vascular smooth muscle cells</subject><issn>2190-4286</issn><issn>2190-4286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1rGzEQhpfS0IQkt56LoJceuo4-V9KlUELaBkJ6aW8FoZVmbZn1ypW0Bv_7yHUSkuoiaeadB2nmbZr3BC-Y7OhVv57sFBdyQYR405xRonHLqerevjifNpc5r3FdHFOl1bvmlCrCuSD0rPlzX-tbZCePNsGlmEuaXZkT1LstkIIdMxpiQmFCu1BSRLnMPkBGcUBlBWi72ucQx7jcHyI7m9082oQcjGO-aE6GWg-Xj_t58_vbza_rH-3dz--311_vWselKq3rpXO6wwKY7znDeuAaBtwz4QiAsoOkkoLzPVBMBIjBYs-xosILbwUe2Hlze-T6aNdmm8LGpr2JNph_gZiWxqYS3Aim66lyQLXUjnONlfXAe99JSTX3iqvK-nJkbed-A97BVJIdX0FfZ6awMsu4M4Iy1UlcAZ8eASn-nSEXswn50A47QZyzIapjne60FlX68T_pOs5pqq0ypKYxE5iSqvp8VB3GkxMMz48h2BxcYI4uMNJUF1T5h5cfeBY_zZw9AIFxsAA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Greiner, Alexandra M</creator><creator>Sales, Adria</creator><creator>Chen, Hao</creator><creator>Biela, Sarah A</creator><creator>Kaufmann, Dieter</creator><creator>Kemkemer, Ralf</creator><general>Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</general><general>Beilstein-Institut</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2016</creationdate><title>Nano- and microstructured materials for in vitro studies of the physiology of vascular cells</title><author>Greiner, Alexandra M ; Sales, Adria ; Chen, Hao ; Biela, Sarah A ; Kaufmann, Dieter ; Kemkemer, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-cb7cc9605e3db4309f49ef0b35c1ee8af7272ecdbe2015e5fa0d40825d5da50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adhesives</topic><topic>Biology</topic><topic>Cell adhesion & migration</topic><topic>Chemical composition</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Extracellular matrix</topic><topic>fabrication methods</topic><topic>Gene expression</topic><topic>Materials science</topic><topic>materials selection</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Muscles</topic><topic>nano- and micro-topography</topic><topic>Nanoscience</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Physical properties</topic><topic>Plasma etching</topic><topic>Polymerization</topic><topic>Review</topic><topic>Silicon wafers</topic><topic>Smooth muscle</topic><topic>Surgical implants</topic><topic>Topography</topic><topic>Transplants & implants</topic><topic>vascular endothelial cells</topic><topic>vascular smooth muscle cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greiner, Alexandra M</creatorcontrib><creatorcontrib>Sales, Adria</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Biela, Sarah A</creatorcontrib><creatorcontrib>Kaufmann, Dieter</creatorcontrib><creatorcontrib>Kemkemer, Ralf</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Beilstein journal of nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greiner, Alexandra M</au><au>Sales, Adria</au><au>Chen, Hao</au><au>Biela, Sarah A</au><au>Kaufmann, Dieter</au><au>Kemkemer, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano- and microstructured materials for in vitro studies of the physiology of vascular cells</atitle><jtitle>Beilstein journal of nanotechnology</jtitle><addtitle>Beilstein J Nanotechnol</addtitle><date>2016</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>1620</spage><epage>1641</epage><pages>1620-1641</pages><issn>2190-4286</issn><eissn>2190-4286</eissn><abstract>The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.</abstract><cop>Germany</cop><pub>Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</pub><pmid>28144512</pmid><doi>10.3762/bjnano.7.155</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-4286 |
ispartof | Beilstein journal of nanotechnology, 2016, Vol.7 (1), p.1620-1641 |
issn | 2190-4286 2190-4286 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6b28ce2979c44908ade4bd677294d848 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed; Free Full-Text Journals in Chemistry |
subjects | Adhesives Biology Cell adhesion & migration Chemical composition Endothelial cells Endothelium Extracellular matrix fabrication methods Gene expression Materials science materials selection Mechanical properties Microscopy Muscles nano- and micro-topography Nanoscience Nanostructure Nanotechnology Physical properties Plasma etching Polymerization Review Silicon wafers Smooth muscle Surgical implants Topography Transplants & implants vascular endothelial cells vascular smooth muscle cells |
title | Nano- and microstructured materials for in vitro studies of the physiology of vascular cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-%20and%20microstructured%20materials%20for%20in%20vitro%20studies%20of%20the%20physiology%20of%20vascular%20cells&rft.jtitle=Beilstein%20journal%20of%20nanotechnology&rft.au=Greiner,%20Alexandra%20M&rft.date=2016&rft.volume=7&rft.issue=1&rft.spage=1620&rft.epage=1641&rft.pages=1620-1641&rft.issn=2190-4286&rft.eissn=2190-4286&rft_id=info:doi/10.3762/bjnano.7.155&rft_dat=%3Cproquest_doaj_%3E1863696995%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-cb7cc9605e3db4309f49ef0b35c1ee8af7272ecdbe2015e5fa0d40825d5da50f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953035021&rft_id=info:pmid/28144512&rfr_iscdi=true |