Loading…
Functional and structural reorganization in brain tumors: a machine learning approach using desynchronized functional oscillations
Neuroimaging studies have allowed for non-invasive mapping of brain networks in brain tumors. Although tumor core and edema are easily identifiable using standard MRI acquisitions, imaging studies often neglect signals, structures, and functions within their presence. Therefore, both functional and...
Saved in:
Published in: | Communications biology 2024-04, Vol.7 (1), p.419-17, Article 419 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-2db2dbf84a5206d5c6742ee21768216f3fb4f1f169022456182a09f13b749bab3 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 419 |
container_title | Communications biology |
container_volume | 7 |
creator | Falcó-Roget, Joan Cacciola, Alberto Sambataro, Fabio Crimi, Alessandro |
description | Neuroimaging studies have allowed for non-invasive mapping of brain networks in brain tumors. Although tumor core and edema are easily identifiable using standard MRI acquisitions, imaging studies often neglect signals, structures, and functions within their presence. Therefore, both functional and diffusion signals, as well as their relationship with global patterns of connectivity reorganization, are poorly understood. Here, we explore the functional activity and the structure of white matter fibers considering the contribution of the whole tumor in a surgical context. First, we find intertwined alterations in the frequency domain of local and spatially distributed resting-state functional signals, potentially arising within the tumor. Second, we propose a fiber tracking pipeline capable of using anatomical information while still reconstructing bundles in tumoral and peritumoral tissue. Finally, using machine learning and healthy anatomical information, we predict structural rearrangement after surgery given the preoperative brain network. The generative model also disentangles complex patterns of connectivity reorganization for different types of tumors. Overall, we show the importance of carefully designing studies including MR signals within damaged brain tissues, as they exhibit and relate to non-trivial patterns of both structural and functional (dis-)connections or activity.
A multimodal MRI study analyzes how signals within brain tumors shape the organization of brain networks and predict surgical outcomes with simple machine learning methods. |
doi_str_mv | 10.1038/s42003-024-06119-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6b373433f6384deabf87bec4bbe70c51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6b373433f6384deabf87bec4bbe70c51</doaj_id><sourcerecordid>3034246891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-2db2dbf84a5206d5c6742ee21768216f3fb4f1f169022456182a09f13b749bab3</originalsourceid><addsrcrecordid>eNp9kk1vFCEYx4nR2GbtF_BgSLx4GcvbMODFmKa1TZp4ac8EGNhlMwMrzJjUo5-87E7tiwcTwtvz5_fAwx-A9xh9xoiK08IIQrRBhDWIYywb-gocEyrrhDPy-tn8CJyUskUIYSklp-wtOKKiFUTw7hj8uZijnUKKeoA69rBMebbTnOsyu5TXOobfeh-HIUKTde2neUy5fIEajtpuQnRwcDrHENdQ73Y51U04l_2yd-Uu2k1OFeJ66J9SpWLDMBzA5R144_VQ3MnDuAK3F-c3Z5fN9Y_vV2ffrhvLJJka0pvavGC6JYj3reUdI84R3HFBMPfUG-axx1wiQljLsSAaSY-p6Zg02tAVuFq4fdJbtcth1PlOJR3UYaM-Vuk8BTs4xQ3tKKPUcypY73RN2xlnmTGuQ7bFlfV1Ye1mM7reujjVkr2AvozEsFHr9EthJKUQklTCpwdCTj9nVyY1hmJdLUp0aS6KIsoI40Luk338R7pNc65lPKiobDGp_7oCZFHZnErJzj_eBiO1t4xaLKOqZdTBMorWQx-ev-PxyF-DVAFdBKWG4trlp9z_wd4DV8LPbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033951296</pqid></control><display><type>article</type><title>Functional and structural reorganization in brain tumors: a machine learning approach using desynchronized functional oscillations</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Falcó-Roget, Joan ; Cacciola, Alberto ; Sambataro, Fabio ; Crimi, Alessandro</creator><creatorcontrib>Falcó-Roget, Joan ; Cacciola, Alberto ; Sambataro, Fabio ; Crimi, Alessandro</creatorcontrib><description>Neuroimaging studies have allowed for non-invasive mapping of brain networks in brain tumors. Although tumor core and edema are easily identifiable using standard MRI acquisitions, imaging studies often neglect signals, structures, and functions within their presence. Therefore, both functional and diffusion signals, as well as their relationship with global patterns of connectivity reorganization, are poorly understood. Here, we explore the functional activity and the structure of white matter fibers considering the contribution of the whole tumor in a surgical context. First, we find intertwined alterations in the frequency domain of local and spatially distributed resting-state functional signals, potentially arising within the tumor. Second, we propose a fiber tracking pipeline capable of using anatomical information while still reconstructing bundles in tumoral and peritumoral tissue. Finally, using machine learning and healthy anatomical information, we predict structural rearrangement after surgery given the preoperative brain network. The generative model also disentangles complex patterns of connectivity reorganization for different types of tumors. Overall, we show the importance of carefully designing studies including MR signals within damaged brain tissues, as they exhibit and relate to non-trivial patterns of both structural and functional (dis-)connections or activity.
A multimodal MRI study analyzes how signals within brain tumors shape the organization of brain networks and predict surgical outcomes with simple machine learning methods.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-024-06119-3</identifier><identifier>PMID: 38582867</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59 ; 59/36 ; 59/57 ; 631/378 ; 631/67/2321 ; 692/617/375/1345 ; Biomedical and Life Sciences ; Brain - diagnostic imaging ; Brain architecture ; Brain cancer ; Brain mapping ; Brain Mapping - methods ; Brain Neoplasms - diagnostic imaging ; Brain tumors ; Diffusion Tensor Imaging - methods ; Edema ; Humans ; Learning algorithms ; Life Sciences ; Machine Learning ; Magnetic resonance imaging ; Neural networks ; Neuroimaging ; Oscillations ; Structure-function relationships ; Substantia alba ; Synchronization ; Tumors</subject><ispartof>Communications biology, 2024-04, Vol.7 (1), p.419-17, Article 419</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-2db2dbf84a5206d5c6742ee21768216f3fb4f1f169022456182a09f13b749bab3</cites><orcidid>0000-0001-5397-6363 ; 0000-0001-9412-4116 ; 0000-0002-9410-6361 ; 0000-0003-2102-416X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998892/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3033951296?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38582867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falcó-Roget, Joan</creatorcontrib><creatorcontrib>Cacciola, Alberto</creatorcontrib><creatorcontrib>Sambataro, Fabio</creatorcontrib><creatorcontrib>Crimi, Alessandro</creatorcontrib><title>Functional and structural reorganization in brain tumors: a machine learning approach using desynchronized functional oscillations</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Neuroimaging studies have allowed for non-invasive mapping of brain networks in brain tumors. Although tumor core and edema are easily identifiable using standard MRI acquisitions, imaging studies often neglect signals, structures, and functions within their presence. Therefore, both functional and diffusion signals, as well as their relationship with global patterns of connectivity reorganization, are poorly understood. Here, we explore the functional activity and the structure of white matter fibers considering the contribution of the whole tumor in a surgical context. First, we find intertwined alterations in the frequency domain of local and spatially distributed resting-state functional signals, potentially arising within the tumor. Second, we propose a fiber tracking pipeline capable of using anatomical information while still reconstructing bundles in tumoral and peritumoral tissue. Finally, using machine learning and healthy anatomical information, we predict structural rearrangement after surgery given the preoperative brain network. The generative model also disentangles complex patterns of connectivity reorganization for different types of tumors. Overall, we show the importance of carefully designing studies including MR signals within damaged brain tissues, as they exhibit and relate to non-trivial patterns of both structural and functional (dis-)connections or activity.
A multimodal MRI study analyzes how signals within brain tumors shape the organization of brain networks and predict surgical outcomes with simple machine learning methods.</description><subject>59</subject><subject>59/36</subject><subject>59/57</subject><subject>631/378</subject><subject>631/67/2321</subject><subject>692/617/375/1345</subject><subject>Biomedical and Life Sciences</subject><subject>Brain - diagnostic imaging</subject><subject>Brain architecture</subject><subject>Brain cancer</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain tumors</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Edema</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Oscillations</subject><subject>Structure-function relationships</subject><subject>Substantia alba</subject><subject>Synchronization</subject><subject>Tumors</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vFCEYx4nR2GbtF_BgSLx4GcvbMODFmKa1TZp4ac8EGNhlMwMrzJjUo5-87E7tiwcTwtvz5_fAwx-A9xh9xoiK08IIQrRBhDWIYywb-gocEyrrhDPy-tn8CJyUskUIYSklp-wtOKKiFUTw7hj8uZijnUKKeoA69rBMebbTnOsyu5TXOobfeh-HIUKTde2neUy5fIEajtpuQnRwcDrHENdQ73Y51U04l_2yd-Uu2k1OFeJ66J9SpWLDMBzA5R144_VQ3MnDuAK3F-c3Z5fN9Y_vV2ffrhvLJJka0pvavGC6JYj3reUdI84R3HFBMPfUG-axx1wiQljLsSAaSY-p6Zg02tAVuFq4fdJbtcth1PlOJR3UYaM-Vuk8BTs4xQ3tKKPUcypY73RN2xlnmTGuQ7bFlfV1Ye1mM7reujjVkr2AvozEsFHr9EthJKUQklTCpwdCTj9nVyY1hmJdLUp0aS6KIsoI40Luk338R7pNc65lPKiobDGp_7oCZFHZnErJzj_eBiO1t4xaLKOqZdTBMorWQx-ev-PxyF-DVAFdBKWG4trlp9z_wd4DV8LPbg</recordid><startdate>20240406</startdate><enddate>20240406</enddate><creator>Falcó-Roget, Joan</creator><creator>Cacciola, Alberto</creator><creator>Sambataro, Fabio</creator><creator>Crimi, Alessandro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5397-6363</orcidid><orcidid>https://orcid.org/0000-0001-9412-4116</orcidid><orcidid>https://orcid.org/0000-0002-9410-6361</orcidid><orcidid>https://orcid.org/0000-0003-2102-416X</orcidid></search><sort><creationdate>20240406</creationdate><title>Functional and structural reorganization in brain tumors: a machine learning approach using desynchronized functional oscillations</title><author>Falcó-Roget, Joan ; Cacciola, Alberto ; Sambataro, Fabio ; Crimi, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-2db2dbf84a5206d5c6742ee21768216f3fb4f1f169022456182a09f13b749bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>59</topic><topic>59/36</topic><topic>59/57</topic><topic>631/378</topic><topic>631/67/2321</topic><topic>692/617/375/1345</topic><topic>Biomedical and Life Sciences</topic><topic>Brain - diagnostic imaging</topic><topic>Brain architecture</topic><topic>Brain cancer</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain tumors</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Edema</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Oscillations</topic><topic>Structure-function relationships</topic><topic>Substantia alba</topic><topic>Synchronization</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falcó-Roget, Joan</creatorcontrib><creatorcontrib>Cacciola, Alberto</creatorcontrib><creatorcontrib>Sambataro, Fabio</creatorcontrib><creatorcontrib>Crimi, Alessandro</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falcó-Roget, Joan</au><au>Cacciola, Alberto</au><au>Sambataro, Fabio</au><au>Crimi, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional and structural reorganization in brain tumors: a machine learning approach using desynchronized functional oscillations</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2024-04-06</date><risdate>2024</risdate><volume>7</volume><issue>1</issue><spage>419</spage><epage>17</epage><pages>419-17</pages><artnum>419</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Neuroimaging studies have allowed for non-invasive mapping of brain networks in brain tumors. Although tumor core and edema are easily identifiable using standard MRI acquisitions, imaging studies often neglect signals, structures, and functions within their presence. Therefore, both functional and diffusion signals, as well as their relationship with global patterns of connectivity reorganization, are poorly understood. Here, we explore the functional activity and the structure of white matter fibers considering the contribution of the whole tumor in a surgical context. First, we find intertwined alterations in the frequency domain of local and spatially distributed resting-state functional signals, potentially arising within the tumor. Second, we propose a fiber tracking pipeline capable of using anatomical information while still reconstructing bundles in tumoral and peritumoral tissue. Finally, using machine learning and healthy anatomical information, we predict structural rearrangement after surgery given the preoperative brain network. The generative model also disentangles complex patterns of connectivity reorganization for different types of tumors. Overall, we show the importance of carefully designing studies including MR signals within damaged brain tissues, as they exhibit and relate to non-trivial patterns of both structural and functional (dis-)connections or activity.
A multimodal MRI study analyzes how signals within brain tumors shape the organization of brain networks and predict surgical outcomes with simple machine learning methods.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38582867</pmid><doi>10.1038/s42003-024-06119-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5397-6363</orcidid><orcidid>https://orcid.org/0000-0001-9412-4116</orcidid><orcidid>https://orcid.org/0000-0002-9410-6361</orcidid><orcidid>https://orcid.org/0000-0003-2102-416X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2024-04, Vol.7 (1), p.419-17, Article 419 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6b373433f6384deabf87bec4bbe70c51 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 59 59/36 59/57 631/378 631/67/2321 692/617/375/1345 Biomedical and Life Sciences Brain - diagnostic imaging Brain architecture Brain cancer Brain mapping Brain Mapping - methods Brain Neoplasms - diagnostic imaging Brain tumors Diffusion Tensor Imaging - methods Edema Humans Learning algorithms Life Sciences Machine Learning Magnetic resonance imaging Neural networks Neuroimaging Oscillations Structure-function relationships Substantia alba Synchronization Tumors |
title | Functional and structural reorganization in brain tumors: a machine learning approach using desynchronized functional oscillations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20and%20structural%20reorganization%20in%20brain%20tumors:%20a%20machine%20learning%20approach%20using%20desynchronized%20functional%20oscillations&rft.jtitle=Communications%20biology&rft.au=Falc%C3%B3-Roget,%20Joan&rft.date=2024-04-06&rft.volume=7&rft.issue=1&rft.spage=419&rft.epage=17&rft.pages=419-17&rft.artnum=419&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-024-06119-3&rft_dat=%3Cproquest_doaj_%3E3034246891%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-2db2dbf84a5206d5c6742ee21768216f3fb4f1f169022456182a09f13b749bab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3033951296&rft_id=info:pmid/38582867&rfr_iscdi=true |