Loading…

Thermal Performance of Cryogenic Micro-Pin Fin Coolers with Two-Phase Liquid Nitrogen Flows

This study experimentally explores the thermofluidic performance of a cryogenic micro-pin fin cooler with two-phase liquid nitrogen flows. The liquid nitrogen cooling system is introduced to investigate the performance of the micro-pin cooler in a cryogenic condition. The result reveals that the nom...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-11, Vol.11 (22), p.11071
Main Authors: Kim, Kyoung Joon, Yang, Hyeon Ho, Noh, Wooheon, Han, Bongtae, Bar-Cohen, Avram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study experimentally explores the thermofluidic performance of a cryogenic micro-pin fin cooler with two-phase liquid nitrogen flows. The liquid nitrogen cooling system is introduced to investigate the performance of the micro-pin cooler in a cryogenic condition. The result reveals that the nominal value of the base heat transfer coefficients of the micro-pin fin cooler with liquid nitrogen flows, 240 kW/m2-K at a mass flow rate of 2.23 g/s, is an order of magnitude greater than that with FC-72 flows. The result also demonstrates that the base heat transfer coefficient of the micro-pin fin cooler is nearly three times greater than that of the micro-gap cooler, not containing any fins. This study shows the feasibility of the cryogenic micro-pin fin cooler for thermally controlling very high heat density devices such as high-power laser diode bars, of which the heat density can reach 2000 kW/m2.
ISSN:2076-3417
2076-3417
DOI:10.3390/app112211071