Loading…

CMFPNet: A Cross-Modal Multidimensional Frequency Perception Network for Extracting Offshore Aquaculture Areas from MSI and SAR Images

The accurate extraction and monitoring of offshore aquaculture areas are crucial for the marine economy, environmental management, and sustainable development. Existing methods relying on unimodal remote sensing images are limited by natural conditions and sensor characteristics. To address this iss...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2024-08, Vol.16 (15), p.2825
Main Authors: Yu, Haomiao, Wang, Fangxiong, Hou, Yingzi, Wang, Junfu, Zhu, Jianfeng, Cui, Zhenqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-c06026db5e3e9092597b5a65395d12b35f5ace92ac55b2ebce09286f1b5476743
container_end_page
container_issue 15
container_start_page 2825
container_title Remote sensing (Basel, Switzerland)
container_volume 16
creator Yu, Haomiao
Wang, Fangxiong
Hou, Yingzi
Wang, Junfu
Zhu, Jianfeng
Cui, Zhenqi
description The accurate extraction and monitoring of offshore aquaculture areas are crucial for the marine economy, environmental management, and sustainable development. Existing methods relying on unimodal remote sensing images are limited by natural conditions and sensor characteristics. To address this issue, we integrated multispectral imaging (MSI) and synthetic aperture radar imaging (SAR) to overcome the limitations of single-modal images. We propose a cross-modal multidimensional frequency perception network (CMFPNet) to enhance classification and extraction accuracy. CMFPNet includes a local–global perception block (LGPB) for combining local and global semantic information and a multidimensional adaptive frequency filtering attention block (MAFFAB) that dynamically filters frequency-domain information that is beneficial for aquaculture area recognition. We constructed six typical offshore aquaculture datasets and compared CMFPNet with other models. The quantitative results showed that CMFPNet outperformed the existing methods in terms of classifying and extracting floating raft aquaculture (FRA) and cage aquaculture (CA), achieving mean intersection over union (mIoU), mean F1 score (mF1), and mean Kappa coefficient (mKappa) values of 87.66%, 93.41%, and 92.59%, respectively. Moreover, CMFPNet has low model complexity and successfully achieves a good balance between performance and the number of required parameters. Qualitative results indicate significant reductions in missed detections, false detections, and adhesion phenomena. Overall, CMFPNet demonstrates great potential for accurately extracting large-scale offshore aquaculture areas, providing effective data support for marine planning and environmental protection. Our code is available at Data Availability Statement section.
doi_str_mv 10.3390/rs16152825
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6b55c356f3814edb8d320f9177aa642d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804517008</galeid><doaj_id>oai_doaj_org_article_6b55c356f3814edb8d320f9177aa642d</doaj_id><sourcerecordid>A804517008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-c06026db5e3e9092597b5a65395d12b35f5ace92ac55b2ebce09286f1b5476743</originalsourceid><addsrcrecordid>eNpNUV1P3DAQjKpWKgJe-AWW-lYp4I_YifsWnTg4iSuolGfLsddXXy_xYScC_gC_G4er2q4fdjXaGa9miuKM4HPGJL6IiQjCaUP5h-KI4pqWFZX043_z5-I0pS3OxRiRuDoqXhfr5d13GL-hFi1iSKlcB6t3aD3tRm99D0PyYcjAMsLjBIN5QXcQDezHDKNMfArxN3IhosvnMWoz-mGDbp1Lv0IE1D5O2mSlaZ4j6IRcDD1a36-QHiy6b3-gVa83kE6KT07vEpz-6cfFw_Ly5-K6vLm9Wi3am9LQRo6lwQJTYTsODCSWlMu641pwJrkltGPccW1AUm047yh0BvJSIxzpeFWLumLHxeqga4Peqn30vY4vKmiv3oEQN0rH0ZsdKNFxbhgXjjWkAts1llHsJKlrrUVFbdb6ctDax5CtSaPahilmr5JiOF_HcIXnH88PWxudRf3gwmxTfhZ6b8IAzme8bXDFSY1xkwlfDwQzxxHB_T2TYDXnrP7lzN4ApPmZDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090930404</pqid></control><display><type>article</type><title>CMFPNet: A Cross-Modal Multidimensional Frequency Perception Network for Extracting Offshore Aquaculture Areas from MSI and SAR Images</title><source>Publicly Available Content Database</source><creator>Yu, Haomiao ; Wang, Fangxiong ; Hou, Yingzi ; Wang, Junfu ; Zhu, Jianfeng ; Cui, Zhenqi</creator><creatorcontrib>Yu, Haomiao ; Wang, Fangxiong ; Hou, Yingzi ; Wang, Junfu ; Zhu, Jianfeng ; Cui, Zhenqi</creatorcontrib><description>The accurate extraction and monitoring of offshore aquaculture areas are crucial for the marine economy, environmental management, and sustainable development. Existing methods relying on unimodal remote sensing images are limited by natural conditions and sensor characteristics. To address this issue, we integrated multispectral imaging (MSI) and synthetic aperture radar imaging (SAR) to overcome the limitations of single-modal images. We propose a cross-modal multidimensional frequency perception network (CMFPNet) to enhance classification and extraction accuracy. CMFPNet includes a local–global perception block (LGPB) for combining local and global semantic information and a multidimensional adaptive frequency filtering attention block (MAFFAB) that dynamically filters frequency-domain information that is beneficial for aquaculture area recognition. We constructed six typical offshore aquaculture datasets and compared CMFPNet with other models. The quantitative results showed that CMFPNet outperformed the existing methods in terms of classifying and extracting floating raft aquaculture (FRA) and cage aquaculture (CA), achieving mean intersection over union (mIoU), mean F1 score (mF1), and mean Kappa coefficient (mKappa) values of 87.66%, 93.41%, and 92.59%, respectively. Moreover, CMFPNet has low model complexity and successfully achieves a good balance between performance and the number of required parameters. Qualitative results indicate significant reductions in missed detections, false detections, and adhesion phenomena. Overall, CMFPNet demonstrates great potential for accurately extracting large-scale offshore aquaculture areas, providing effective data support for marine planning and environmental protection. Our code is available at Data Availability Statement section.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs16152825</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aquaculture ; Aquaculture industry ; Artificial satellites in remote sensing ; Availability ; Classification ; Coasts ; Deep learning ; Environmental impact ; Environmental management ; Environmental monitoring ; Environmental protection ; feature fusion ; Fisheries ; Image enhancement ; Mariculture ; Methods ; Multidimensional methods ; multimodal remote sensing ; offshore aquaculture ; Perception ; Qualitative analysis ; Radar imaging ; Remote sensing ; Remote sensors ; semantic segmentation ; Semantics ; sentinel ; Sustainable development ; Synthetic aperture radar</subject><ispartof>Remote sensing (Basel, Switzerland), 2024-08, Vol.16 (15), p.2825</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-c06026db5e3e9092597b5a65395d12b35f5ace92ac55b2ebce09286f1b5476743</cites><orcidid>0009-0000-3364-2542 ; 0009-0003-3676-9698 ; 0000-0001-8703-7479 ; 0000-0003-1964-4394 ; 0009-0005-2627-3079 ; 0009-0007-6927-2409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090930404/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090930404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yu, Haomiao</creatorcontrib><creatorcontrib>Wang, Fangxiong</creatorcontrib><creatorcontrib>Hou, Yingzi</creatorcontrib><creatorcontrib>Wang, Junfu</creatorcontrib><creatorcontrib>Zhu, Jianfeng</creatorcontrib><creatorcontrib>Cui, Zhenqi</creatorcontrib><title>CMFPNet: A Cross-Modal Multidimensional Frequency Perception Network for Extracting Offshore Aquaculture Areas from MSI and SAR Images</title><title>Remote sensing (Basel, Switzerland)</title><description>The accurate extraction and monitoring of offshore aquaculture areas are crucial for the marine economy, environmental management, and sustainable development. Existing methods relying on unimodal remote sensing images are limited by natural conditions and sensor characteristics. To address this issue, we integrated multispectral imaging (MSI) and synthetic aperture radar imaging (SAR) to overcome the limitations of single-modal images. We propose a cross-modal multidimensional frequency perception network (CMFPNet) to enhance classification and extraction accuracy. CMFPNet includes a local–global perception block (LGPB) for combining local and global semantic information and a multidimensional adaptive frequency filtering attention block (MAFFAB) that dynamically filters frequency-domain information that is beneficial for aquaculture area recognition. We constructed six typical offshore aquaculture datasets and compared CMFPNet with other models. The quantitative results showed that CMFPNet outperformed the existing methods in terms of classifying and extracting floating raft aquaculture (FRA) and cage aquaculture (CA), achieving mean intersection over union (mIoU), mean F1 score (mF1), and mean Kappa coefficient (mKappa) values of 87.66%, 93.41%, and 92.59%, respectively. Moreover, CMFPNet has low model complexity and successfully achieves a good balance between performance and the number of required parameters. Qualitative results indicate significant reductions in missed detections, false detections, and adhesion phenomena. Overall, CMFPNet demonstrates great potential for accurately extracting large-scale offshore aquaculture areas, providing effective data support for marine planning and environmental protection. Our code is available at Data Availability Statement section.</description><subject>Accuracy</subject><subject>Aquaculture</subject><subject>Aquaculture industry</subject><subject>Artificial satellites in remote sensing</subject><subject>Availability</subject><subject>Classification</subject><subject>Coasts</subject><subject>Deep learning</subject><subject>Environmental impact</subject><subject>Environmental management</subject><subject>Environmental monitoring</subject><subject>Environmental protection</subject><subject>feature fusion</subject><subject>Fisheries</subject><subject>Image enhancement</subject><subject>Mariculture</subject><subject>Methods</subject><subject>Multidimensional methods</subject><subject>multimodal remote sensing</subject><subject>offshore aquaculture</subject><subject>Perception</subject><subject>Qualitative analysis</subject><subject>Radar imaging</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>sentinel</subject><subject>Sustainable development</subject><subject>Synthetic aperture radar</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1P3DAQjKpWKgJe-AWW-lYp4I_YifsWnTg4iSuolGfLsddXXy_xYScC_gC_G4er2q4fdjXaGa9miuKM4HPGJL6IiQjCaUP5h-KI4pqWFZX043_z5-I0pS3OxRiRuDoqXhfr5d13GL-hFi1iSKlcB6t3aD3tRm99D0PyYcjAMsLjBIN5QXcQDezHDKNMfArxN3IhosvnMWoz-mGDbp1Lv0IE1D5O2mSlaZ4j6IRcDD1a36-QHiy6b3-gVa83kE6KT07vEpz-6cfFw_Ly5-K6vLm9Wi3am9LQRo6lwQJTYTsODCSWlMu641pwJrkltGPccW1AUm047yh0BvJSIxzpeFWLumLHxeqga4Peqn30vY4vKmiv3oEQN0rH0ZsdKNFxbhgXjjWkAts1llHsJKlrrUVFbdb6ctDax5CtSaPahilmr5JiOF_HcIXnH88PWxudRf3gwmxTfhZ6b8IAzme8bXDFSY1xkwlfDwQzxxHB_T2TYDXnrP7lzN4ApPmZDQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yu, Haomiao</creator><creator>Wang, Fangxiong</creator><creator>Hou, Yingzi</creator><creator>Wang, Junfu</creator><creator>Zhu, Jianfeng</creator><creator>Cui, Zhenqi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-3364-2542</orcidid><orcidid>https://orcid.org/0009-0003-3676-9698</orcidid><orcidid>https://orcid.org/0000-0001-8703-7479</orcidid><orcidid>https://orcid.org/0000-0003-1964-4394</orcidid><orcidid>https://orcid.org/0009-0005-2627-3079</orcidid><orcidid>https://orcid.org/0009-0007-6927-2409</orcidid></search><sort><creationdate>20240801</creationdate><title>CMFPNet: A Cross-Modal Multidimensional Frequency Perception Network for Extracting Offshore Aquaculture Areas from MSI and SAR Images</title><author>Yu, Haomiao ; Wang, Fangxiong ; Hou, Yingzi ; Wang, Junfu ; Zhu, Jianfeng ; Cui, Zhenqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-c06026db5e3e9092597b5a65395d12b35f5ace92ac55b2ebce09286f1b5476743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aquaculture</topic><topic>Aquaculture industry</topic><topic>Artificial satellites in remote sensing</topic><topic>Availability</topic><topic>Classification</topic><topic>Coasts</topic><topic>Deep learning</topic><topic>Environmental impact</topic><topic>Environmental management</topic><topic>Environmental monitoring</topic><topic>Environmental protection</topic><topic>feature fusion</topic><topic>Fisheries</topic><topic>Image enhancement</topic><topic>Mariculture</topic><topic>Methods</topic><topic>Multidimensional methods</topic><topic>multimodal remote sensing</topic><topic>offshore aquaculture</topic><topic>Perception</topic><topic>Qualitative analysis</topic><topic>Radar imaging</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>sentinel</topic><topic>Sustainable development</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Haomiao</creatorcontrib><creatorcontrib>Wang, Fangxiong</creatorcontrib><creatorcontrib>Hou, Yingzi</creatorcontrib><creatorcontrib>Wang, Junfu</creatorcontrib><creatorcontrib>Zhu, Jianfeng</creatorcontrib><creatorcontrib>Cui, Zhenqi</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Haomiao</au><au>Wang, Fangxiong</au><au>Hou, Yingzi</au><au>Wang, Junfu</au><au>Zhu, Jianfeng</au><au>Cui, Zhenqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CMFPNet: A Cross-Modal Multidimensional Frequency Perception Network for Extracting Offshore Aquaculture Areas from MSI and SAR Images</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>2825</spage><pages>2825-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The accurate extraction and monitoring of offshore aquaculture areas are crucial for the marine economy, environmental management, and sustainable development. Existing methods relying on unimodal remote sensing images are limited by natural conditions and sensor characteristics. To address this issue, we integrated multispectral imaging (MSI) and synthetic aperture radar imaging (SAR) to overcome the limitations of single-modal images. We propose a cross-modal multidimensional frequency perception network (CMFPNet) to enhance classification and extraction accuracy. CMFPNet includes a local–global perception block (LGPB) for combining local and global semantic information and a multidimensional adaptive frequency filtering attention block (MAFFAB) that dynamically filters frequency-domain information that is beneficial for aquaculture area recognition. We constructed six typical offshore aquaculture datasets and compared CMFPNet with other models. The quantitative results showed that CMFPNet outperformed the existing methods in terms of classifying and extracting floating raft aquaculture (FRA) and cage aquaculture (CA), achieving mean intersection over union (mIoU), mean F1 score (mF1), and mean Kappa coefficient (mKappa) values of 87.66%, 93.41%, and 92.59%, respectively. Moreover, CMFPNet has low model complexity and successfully achieves a good balance between performance and the number of required parameters. Qualitative results indicate significant reductions in missed detections, false detections, and adhesion phenomena. Overall, CMFPNet demonstrates great potential for accurately extracting large-scale offshore aquaculture areas, providing effective data support for marine planning and environmental protection. Our code is available at Data Availability Statement section.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs16152825</doi><orcidid>https://orcid.org/0009-0000-3364-2542</orcidid><orcidid>https://orcid.org/0009-0003-3676-9698</orcidid><orcidid>https://orcid.org/0000-0001-8703-7479</orcidid><orcidid>https://orcid.org/0000-0003-1964-4394</orcidid><orcidid>https://orcid.org/0009-0005-2627-3079</orcidid><orcidid>https://orcid.org/0009-0007-6927-2409</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2024-08, Vol.16 (15), p.2825
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6b55c356f3814edb8d320f9177aa642d
source Publicly Available Content Database
subjects Accuracy
Aquaculture
Aquaculture industry
Artificial satellites in remote sensing
Availability
Classification
Coasts
Deep learning
Environmental impact
Environmental management
Environmental monitoring
Environmental protection
feature fusion
Fisheries
Image enhancement
Mariculture
Methods
Multidimensional methods
multimodal remote sensing
offshore aquaculture
Perception
Qualitative analysis
Radar imaging
Remote sensing
Remote sensors
semantic segmentation
Semantics
sentinel
Sustainable development
Synthetic aperture radar
title CMFPNet: A Cross-Modal Multidimensional Frequency Perception Network for Extracting Offshore Aquaculture Areas from MSI and SAR Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CMFPNet:%20A%20Cross-Modal%20Multidimensional%20Frequency%20Perception%20Network%20for%20Extracting%20Offshore%20Aquaculture%20Areas%20from%20MSI%20and%20SAR%20Images&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Yu,%20Haomiao&rft.date=2024-08-01&rft.volume=16&rft.issue=15&rft.spage=2825&rft.pages=2825-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs16152825&rft_dat=%3Cgale_doaj_%3EA804517008%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-c06026db5e3e9092597b5a65395d12b35f5ace92ac55b2ebce09286f1b5476743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090930404&rft_id=info:pmid/&rft_galeid=A804517008&rfr_iscdi=true