Loading…

Insights into few shot learning approaches for image scene classification

Image understanding and scene classification are keystone tasks in computer vision. The development of technologies and profusion of existing datasets open a wide room for improvement in the image classification and recognition research area. Notwithstanding the optimal performance of exiting machin...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science 2021-09, Vol.7, p.e666-e666, Article e666
Main Authors: Soudy, Mohamed, Afify, Yasmine, Badr, Nagwa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c556t-3c271f8820deddaf7146ebc569abd7e77e359efbf81275e3a0557d80723129453
cites cdi_FETCH-LOGICAL-c556t-3c271f8820deddaf7146ebc569abd7e77e359efbf81275e3a0557d80723129453
container_end_page e666
container_issue
container_start_page e666
container_title PeerJ. Computer science
container_volume 7
creator Soudy, Mohamed
Afify, Yasmine
Badr, Nagwa
description Image understanding and scene classification are keystone tasks in computer vision. The development of technologies and profusion of existing datasets open a wide room for improvement in the image classification and recognition research area. Notwithstanding the optimal performance of exiting machine learning models in image understanding and scene classification, there are still obstacles to overcome. All models are data-dependent that can only classify samples close to the training set. Moreover, these models require large data for training and learning. The first problem is solved by few-shot learning, which achieves optimal performance in object detection and classification but with a lack of eligible attention in the scene classification task. Motivated by these findings, in this paper, we introduce two models for few-shot learning in scene classification. In order to trace the behavior of those models, we also introduce two datasets (MiniSun; MiniPlaces) for image scene classification. Experimental results show that the proposed models outperform the benchmark approaches in respect of classification accuracy.
doi_str_mv 10.7717/peerj-cs.666
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6b748356a47b402a8fb6e0d35e822211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676160276</galeid><doaj_id>oai_doaj_org_article_6b748356a47b402a8fb6e0d35e822211</doaj_id><sourcerecordid>A676160276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-3c271f8820deddaf7146ebc569abd7e77e359efbf81275e3a0557d80723129453</originalsourceid><addsrcrecordid>eNptkktv1DAQgCMEolXpjR8QiQtIzdaP2E4uSFXFI1KlSi2cLccZZ73K2sF2gP57vN0KCMI52HK--SYzmaJ4jdFGCCwuZ4Cwq3TccM6fFaeECl6xtiXP_zqfFOcx7hBCmOG82pfFCa055k1DTouuc9GO2xRL65IvDfwo49ancgIVnHVjqeY5eKW3EEvjQ2n3aoQyanBQ6knFaI3VKlnvXhUvjJoinD_tZ8XXjx--XH-ubm4_dddXN5VmjKeKaiKwybnRAMOgjMA1h14z3qp-ECAEUNaC6U2DiWBAFWJMDA0ShGLS1oyeFd3RO3i1k3PIXxQepFdWPl74MEoVktUTSN6LuqGMq1r0NSKqMT0HNFAGDSEE4-x6f3TNS7-HIVeVgppW0vUbZ7dy9N9lU7NWCJ4Fb58EwX9bICa5t7k506Qc-CVKwhqEcsGszuibf9CdX4LLrcqUqBljLWr_UKPKBVhnfM6rD1J5xUX-a9l2SLv5D5WfAfZWewfG5vtVwLtVQGYS_EyjWmKU3f3dmr04sjr4GAOY3_3ASB6mTj5OndRR5qmjvwA_O8dl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574555909</pqid></control><display><type>article</type><title>Insights into few shot learning approaches for image scene classification</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Soudy, Mohamed ; Afify, Yasmine ; Badr, Nagwa</creator><creatorcontrib>Soudy, Mohamed ; Afify, Yasmine ; Badr, Nagwa</creatorcontrib><description>Image understanding and scene classification are keystone tasks in computer vision. The development of technologies and profusion of existing datasets open a wide room for improvement in the image classification and recognition research area. Notwithstanding the optimal performance of exiting machine learning models in image understanding and scene classification, there are still obstacles to overcome. All models are data-dependent that can only classify samples close to the training set. Moreover, these models require large data for training and learning. The first problem is solved by few-shot learning, which achieves optimal performance in object detection and classification but with a lack of eligible attention in the scene classification task. Motivated by these findings, in this paper, we introduce two models for few-shot learning in scene classification. In order to trace the behavior of those models, we also introduce two datasets (MiniSun; MiniPlaces) for image scene classification. Experimental results show that the proposed models outperform the benchmark approaches in respect of classification accuracy.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.666</identifier><identifier>PMID: 34616882</identifier><language>eng</language><publisher>San Diego: PeerJ. Ltd</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Classification ; Computer Vision ; Data Mining and Machine Learning ; Datasets ; Few shot learning ; Image classification ; Machine learning ; Machine vision ; Object recognition ; Places ; Reptile ; Researchers ; Scene classification ; Software ; Sun397 ; Training</subject><ispartof>PeerJ. Computer science, 2021-09, Vol.7, p.e666-e666, Article e666</ispartof><rights>COPYRIGHT 2021 PeerJ. Ltd.</rights><rights>2021 Soudy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Soudy et al. 2021 Soudy et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-3c271f8820deddaf7146ebc569abd7e77e359efbf81275e3a0557d80723129453</citedby><cites>FETCH-LOGICAL-c556t-3c271f8820deddaf7146ebc569abd7e77e359efbf81275e3a0557d80723129453</cites><orcidid>0000-0003-2735-0038 ; 0000-0001-6400-8472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2574555909/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2574555909?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Soudy, Mohamed</creatorcontrib><creatorcontrib>Afify, Yasmine</creatorcontrib><creatorcontrib>Badr, Nagwa</creatorcontrib><title>Insights into few shot learning approaches for image scene classification</title><title>PeerJ. Computer science</title><description>Image understanding and scene classification are keystone tasks in computer vision. The development of technologies and profusion of existing datasets open a wide room for improvement in the image classification and recognition research area. Notwithstanding the optimal performance of exiting machine learning models in image understanding and scene classification, there are still obstacles to overcome. All models are data-dependent that can only classify samples close to the training set. Moreover, these models require large data for training and learning. The first problem is solved by few-shot learning, which achieves optimal performance in object detection and classification but with a lack of eligible attention in the scene classification task. Motivated by these findings, in this paper, we introduce two models for few-shot learning in scene classification. In order to trace the behavior of those models, we also introduce two datasets (MiniSun; MiniPlaces) for image scene classification. Experimental results show that the proposed models outperform the benchmark approaches in respect of classification accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computer Vision</subject><subject>Data Mining and Machine Learning</subject><subject>Datasets</subject><subject>Few shot learning</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Object recognition</subject><subject>Places</subject><subject>Reptile</subject><subject>Researchers</subject><subject>Scene classification</subject><subject>Software</subject><subject>Sun397</subject><subject>Training</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQgCMEolXpjR8QiQtIzdaP2E4uSFXFI1KlSi2cLccZZ73K2sF2gP57vN0KCMI52HK--SYzmaJ4jdFGCCwuZ4Cwq3TccM6fFaeECl6xtiXP_zqfFOcx7hBCmOG82pfFCa055k1DTouuc9GO2xRL65IvDfwo49ancgIVnHVjqeY5eKW3EEvjQ2n3aoQyanBQ6knFaI3VKlnvXhUvjJoinD_tZ8XXjx--XH-ubm4_dddXN5VmjKeKaiKwybnRAMOgjMA1h14z3qp-ECAEUNaC6U2DiWBAFWJMDA0ShGLS1oyeFd3RO3i1k3PIXxQepFdWPl74MEoVktUTSN6LuqGMq1r0NSKqMT0HNFAGDSEE4-x6f3TNS7-HIVeVgppW0vUbZ7dy9N9lU7NWCJ4Fb58EwX9bICa5t7k506Qc-CVKwhqEcsGszuibf9CdX4LLrcqUqBljLWr_UKPKBVhnfM6rD1J5xUX-a9l2SLv5D5WfAfZWewfG5vtVwLtVQGYS_EyjWmKU3f3dmr04sjr4GAOY3_3ASB6mTj5OndRR5qmjvwA_O8dl</recordid><startdate>20210920</startdate><enddate>20210920</enddate><creator>Soudy, Mohamed</creator><creator>Afify, Yasmine</creator><creator>Badr, Nagwa</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2735-0038</orcidid><orcidid>https://orcid.org/0000-0001-6400-8472</orcidid></search><sort><creationdate>20210920</creationdate><title>Insights into few shot learning approaches for image scene classification</title><author>Soudy, Mohamed ; Afify, Yasmine ; Badr, Nagwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-3c271f8820deddaf7146ebc569abd7e77e359efbf81275e3a0557d80723129453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computer Vision</topic><topic>Data Mining and Machine Learning</topic><topic>Datasets</topic><topic>Few shot learning</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Object recognition</topic><topic>Places</topic><topic>Reptile</topic><topic>Researchers</topic><topic>Scene classification</topic><topic>Software</topic><topic>Sun397</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soudy, Mohamed</creatorcontrib><creatorcontrib>Afify, Yasmine</creatorcontrib><creatorcontrib>Badr, Nagwa</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soudy, Mohamed</au><au>Afify, Yasmine</au><au>Badr, Nagwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into few shot learning approaches for image scene classification</atitle><jtitle>PeerJ. Computer science</jtitle><date>2021-09-20</date><risdate>2021</risdate><volume>7</volume><spage>e666</spage><epage>e666</epage><pages>e666-e666</pages><artnum>e666</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>Image understanding and scene classification are keystone tasks in computer vision. The development of technologies and profusion of existing datasets open a wide room for improvement in the image classification and recognition research area. Notwithstanding the optimal performance of exiting machine learning models in image understanding and scene classification, there are still obstacles to overcome. All models are data-dependent that can only classify samples close to the training set. Moreover, these models require large data for training and learning. The first problem is solved by few-shot learning, which achieves optimal performance in object detection and classification but with a lack of eligible attention in the scene classification task. Motivated by these findings, in this paper, we introduce two models for few-shot learning in scene classification. In order to trace the behavior of those models, we also introduce two datasets (MiniSun; MiniPlaces) for image scene classification. Experimental results show that the proposed models outperform the benchmark approaches in respect of classification accuracy.</abstract><cop>San Diego</cop><pub>PeerJ. Ltd</pub><pmid>34616882</pmid><doi>10.7717/peerj-cs.666</doi><tpages>e666</tpages><orcidid>https://orcid.org/0000-0003-2735-0038</orcidid><orcidid>https://orcid.org/0000-0001-6400-8472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2376-5992
ispartof PeerJ. Computer science, 2021-09, Vol.7, p.e666-e666, Article e666
issn 2376-5992
2376-5992
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6b748356a47b402a8fb6e0d35e822211
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Accuracy
Algorithms
Artificial Intelligence
Classification
Computer Vision
Data Mining and Machine Learning
Datasets
Few shot learning
Image classification
Machine learning
Machine vision
Object recognition
Places
Reptile
Researchers
Scene classification
Software
Sun397
Training
title Insights into few shot learning approaches for image scene classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20few%20shot%20learning%20approaches%20for%20image%20scene%20classification&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Soudy,%20Mohamed&rft.date=2021-09-20&rft.volume=7&rft.spage=e666&rft.epage=e666&rft.pages=e666-e666&rft.artnum=e666&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.666&rft_dat=%3Cgale_doaj_%3EA676160276%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-3c271f8820deddaf7146ebc569abd7e77e359efbf81275e3a0557d80723129453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574555909&rft_id=info:pmid/34616882&rft_galeid=A676160276&rfr_iscdi=true