Loading…
Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics
Drought is a significant condition that restricts vegetation growth on the Tibetan Plateau. Artemisia wellbyi is a unique semi-shrub-like herb in the family Compositae, which distributed in northern and northwest of Tibetan Plateau. It is a dominant species in the community that can well adapt to vi...
Saved in:
Published in: | BMC plant biology 2022-09, Vol.22 (1), p.1-445, Article 445 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drought is a significant condition that restricts vegetation growth on the Tibetan Plateau. Artemisia wellbyi is a unique semi-shrub-like herb in the family Compositae, which distributed in northern and northwest of Tibetan Plateau. It is a dominant species in the community that can well adapt to virous environment stress, such as drought and low temperature. Therefore, A. wellbyi. has a potential ecological value for soil and water conservation of drought areas. Understanding the molecular mechanisms of A. wellbyi. that defense drought stress can acquire the key genes for drought resistance breeding of A. wellbyi. and provide a theoretical basis for vegetation restoration of desertification area. However, they remain unclear. Thus, our study compared the transcriptomic characteristics of drought-tolerant "11" and drought-sensitive "6" material of A. wellbyi under drought stress. A total of 4875 upregulated and 4381 downregulated differentially expressed genes (DEGs) were induced by drought in the tolerant material; however, only 1931 upregulated and 4174 downregulated DEGs were induced by drought in the sensitive material. The photosynthesis and transcriptional regulation differed significantly with respect to the DEGs number and expression level. We found that CDPKs (calmodulin-like domain protein kinases), SOS3 (salt overly sensitive3), MAPKs (mitogen-activated protein kinase cascades), RLKs (receptor like kinase), and LRR-RLKs (repeat leucine-rich receptor kinase) were firstly involved in response to drought stress in drought tolerant A. wellbyi. Positive regulation of genes associated with the metabolism of ABA (abscisic acid), ET (ethylene), and IAA (indole acetic acid) could play a crucial role in the interaction with other transcriptional regulatory factors, such as MYBs (v-myb avian myeloblastosis viral oncogene homolog), AP2/EREBPs (APETALA2/ethylene-responsive element binding protein family), WRKYs, and bHLHs (basic helix-loop-helix family members) and receptor kinases, and regulate downstream genes for defense against drought stress. In addition, HSP70 (heat shock protein70) and MYB73 were considered as the hub genes because of their strong association with other DEGs. Positive transcriptional regulation and negative regulation of photosynthesis could be associated with better growth performance under drought stress in the drought-tolerant material. In addition, the degradation of sucrose and starch in the tolerant A. wellbyi to alleviate osmot |
---|---|
ISSN: | 1471-2229 1471-2229 |
DOI: | 10.1186/s12870-022-03830-3 |