Loading…

Strain regulates the photovoltaic performance of thick-film perovskites

Perovskite photovoltaics, typically based on a solution-processed perovskite layer with a film thickness of a few hundred nanometres, have emerged as a leading thin-film photovoltaic technology. Nevertheless, many critical issues pose challenges to its commercialization progress, including industria...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-03, Vol.15 (1), p.2579-2579, Article 2579
Main Authors: Shi, Pengju, Xu, Jiazhe, Yavuz, Ilhan, Huang, Tianyi, Tan, Shaun, Zhao, Ke, Zhang, Xu, Tian, Yuan, Wang, Sisi, Fan, Wei, Li, Yahui, Jin, Donger, Yu, Xuemeng, Wang, Chenyue, Gao, Xingyu, Chen, Zhong, Shi, Enzheng, Chen, Xihan, Yang, Deren, Xue, Jingjing, Yang, Yang, Wang, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perovskite photovoltaics, typically based on a solution-processed perovskite layer with a film thickness of a few hundred nanometres, have emerged as a leading thin-film photovoltaic technology. Nevertheless, many critical issues pose challenges to its commercialization progress, including industrial compatibility, stability, scalability and reliability. A thicker perovskite film on a scale of micrometres could mitigate these issues. However, the efficiencies of thick-film perovskite cells lag behind those with nanometre film thickness. With the mechanism remaining elusive, the community has long been under the impression that the limiting factor lies in the short carrier lifetime as a result of defects. Here, by constructing a perovskite system with extraordinarily long carrier lifetime, we rule out the restrictions of carrier lifetime on the device performance. Through this, we unveil the critical role of the ignored lattice strain in thick films. Our results provide insights into the factors limiting the performance of thick-film perovskite devices. The power conversion efficiencies of thick-film perovskite solar cells lag behind those with nanometre film thickness. Here, the authors rule out the restrictions of carrier lifetime on device performance and reveal the critical role of lattice strain in micron-scale thick perovskite films.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47019-8