Loading…
Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation
An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in , suggesting that this mutation confers improved osmotic tolerance. To determine the role th...
Saved in:
Published in: | Bioengineering (Basel) 2017-06, Vol.4 (3), p.61 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703 |
---|---|
cites | cdi_FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703 |
container_end_page | |
container_issue | 3 |
container_start_page | 61 |
container_title | Bioengineering (Basel) |
container_volume | 4 |
creator | Guo, Yuqi Winkler, James Kao, Katy C |
description | An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in
, suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in
plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this
mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes
and
improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene
was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in
, and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation. |
doi_str_mv | 10.3390/bioengineering4030061 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6be849fafb4745fb9d9abc9c6c4d6c02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6be849fafb4745fb9d9abc9c6c4d6c02</doaj_id><sourcerecordid>2124647328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpTwBZ4sJlwd-OL0hoVcpKrXopB06WM5kkXiX2YidI_HvSbqlaxGms8TvPvGNPVb1l9KMQln5qQsLYh4iYQ-wlFZRq9qI65YLqjRJKvnxyPqnOS9lTSpngimv5ujrhtVVcSXpa_djFEvphLiRFclOmNAcgt2nE7CMguUYYfAxlKiREclFgWDvCEDyBNAZy6VcPLelymoiPJB_Sllwvs59Dim-qV50fC54_xLPq-9eL2-23zdXN5W775WoDklO24dbUTLSm5ihqJblCzkEZo2hjagqcYWc6oDVDJThHazRrABlYr8BwQ8VZtTty2-T37pDD5PNvl3xw94mUe-fzOtWITjdYS9v5rpFGqq6xrfUNWNAgWw2Ur6zPR9ZhaSZsAeOc_fgM-vwmhsH16ZdTmilBzQr48ADI6eeCZXZTKIDj6COmpThmpdBK1lyu0vf_SPdpyXF9KscZl1oawetVpY4qyKmUjN2jGUbd3S64_-7CWvfu6SSPVX9_XvwBfl6zSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124647328</pqid></control><display><type>article</type><title>Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Guo, Yuqi ; Winkler, James ; Kao, Katy C</creator><creatorcontrib>Guo, Yuqi ; Winkler, James ; Kao, Katy C</creatorcontrib><description>An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in
, suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in
plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this
mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes
and
improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene
was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in
, and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering4030061</identifier><identifier>PMID: 28952540</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetic acid ; amino acid ; Amino acids ; Bacteria ; Binding sites ; Bioengineering ; Cell membranes ; Clonal deletion ; complex phenotype ; Damage assessment ; Damage tolerance ; DNA-directed RNA polymerase ; E coli ; Escherichia coli ; Fermentation ; Gene deletion ; Genes ; Genomics ; membrane integrity ; Metabolism ; Metabolites ; Methionine ; Microorganisms ; Mutation ; Osmosis ; Osmotic stress ; osmotic tolerance ; Potassium ; Proline ; Raw materials ; Ribonucleic acid ; RNA ; RNA polymerase ; rpoC ; Sodium chloride ; Stresses ; Sulfur ; Transcription</subject><ispartof>Bioengineering (Basel), 2017-06, Vol.4 (3), p.61</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703</citedby><cites>FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703</cites><orcidid>0000-0003-0323-8308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2124647328/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2124647328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28952540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Winkler, James</creatorcontrib><creatorcontrib>Kao, Katy C</creatorcontrib><title>Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in
, suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in
plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this
mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes
and
improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene
was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in
, and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation.</description><subject>Acetic acid</subject><subject>amino acid</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Bioengineering</subject><subject>Cell membranes</subject><subject>Clonal deletion</subject><subject>complex phenotype</subject><subject>Damage assessment</subject><subject>Damage tolerance</subject><subject>DNA-directed RNA polymerase</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fermentation</subject><subject>Gene deletion</subject><subject>Genes</subject><subject>Genomics</subject><subject>membrane integrity</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methionine</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>Osmosis</subject><subject>Osmotic stress</subject><subject>osmotic tolerance</subject><subject>Potassium</subject><subject>Proline</subject><subject>Raw materials</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>rpoC</subject><subject>Sodium chloride</subject><subject>Stresses</subject><subject>Sulfur</subject><subject>Transcription</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXpTwBZ4sJlwd-OL0hoVcpKrXopB06WM5kkXiX2YidI_HvSbqlaxGms8TvPvGNPVb1l9KMQln5qQsLYh4iYQ-wlFZRq9qI65YLqjRJKvnxyPqnOS9lTSpngimv5ujrhtVVcSXpa_djFEvphLiRFclOmNAcgt2nE7CMguUYYfAxlKiREclFgWDvCEDyBNAZy6VcPLelymoiPJB_Sllwvs59Dim-qV50fC54_xLPq-9eL2-23zdXN5W775WoDklO24dbUTLSm5ihqJblCzkEZo2hjagqcYWc6oDVDJThHazRrABlYr8BwQ8VZtTty2-T37pDD5PNvl3xw94mUe-fzOtWITjdYS9v5rpFGqq6xrfUNWNAgWw2Ur6zPR9ZhaSZsAeOc_fgM-vwmhsH16ZdTmilBzQr48ADI6eeCZXZTKIDj6COmpThmpdBK1lyu0vf_SPdpyXF9KscZl1oawetVpY4qyKmUjN2jGUbd3S64_-7CWvfu6SSPVX9_XvwBfl6zSQ</recordid><startdate>20170628</startdate><enddate>20170628</enddate><creator>Guo, Yuqi</creator><creator>Winkler, James</creator><creator>Kao, Katy C</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0323-8308</orcidid></search><sort><creationdate>20170628</creationdate><title>Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation</title><author>Guo, Yuqi ; Winkler, James ; Kao, Katy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>amino acid</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Bioengineering</topic><topic>Cell membranes</topic><topic>Clonal deletion</topic><topic>complex phenotype</topic><topic>Damage assessment</topic><topic>Damage tolerance</topic><topic>DNA-directed RNA polymerase</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fermentation</topic><topic>Gene deletion</topic><topic>Genes</topic><topic>Genomics</topic><topic>membrane integrity</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methionine</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>Osmosis</topic><topic>Osmotic stress</topic><topic>osmotic tolerance</topic><topic>Potassium</topic><topic>Proline</topic><topic>Raw materials</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>rpoC</topic><topic>Sodium chloride</topic><topic>Stresses</topic><topic>Sulfur</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Winkler, James</creatorcontrib><creatorcontrib>Kao, Katy C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yuqi</au><au>Winkler, James</au><au>Kao, Katy C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2017-06-28</date><risdate>2017</risdate><volume>4</volume><issue>3</issue><spage>61</spage><pages>61-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in
, suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in
plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this
mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes
and
improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene
was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in
, and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28952540</pmid><doi>10.3390/bioengineering4030061</doi><orcidid>https://orcid.org/0000-0003-0323-8308</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2306-5354 |
ispartof | Bioengineering (Basel), 2017-06, Vol.4 (3), p.61 |
issn | 2306-5354 2306-5354 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6be849fafb4745fb9d9abc9c6c4d6c02 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Acetic acid amino acid Amino acids Bacteria Binding sites Bioengineering Cell membranes Clonal deletion complex phenotype Damage assessment Damage tolerance DNA-directed RNA polymerase E coli Escherichia coli Fermentation Gene deletion Genes Genomics membrane integrity Metabolism Metabolites Methionine Microorganisms Mutation Osmosis Osmotic stress osmotic tolerance Potassium Proline Raw materials Ribonucleic acid RNA RNA polymerase rpoC Sodium chloride Stresses Sulfur Transcription |
title | Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20on%20Osmotic%20Tolerance%20Mechanisms%20in%20Escherichia%20coli%20Gained%20from%20an%20rpoC%20Mutation&rft.jtitle=Bioengineering%20(Basel)&rft.au=Guo,%20Yuqi&rft.date=2017-06-28&rft.volume=4&rft.issue=3&rft.spage=61&rft.pages=61-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering4030061&rft_dat=%3Cproquest_doaj_%3E2124647328%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124647328&rft_id=info:pmid/28952540&rfr_iscdi=true |