Loading…

Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation

An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in , suggesting that this mutation confers improved osmotic tolerance. To determine the role th...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) 2017-06, Vol.4 (3), p.61
Main Authors: Guo, Yuqi, Winkler, James, Kao, Katy C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703
cites cdi_FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703
container_end_page
container_issue 3
container_start_page 61
container_title Bioengineering (Basel)
container_volume 4
creator Guo, Yuqi
Winkler, James
Kao, Katy C
description An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in , suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes and improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in , and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation.
doi_str_mv 10.3390/bioengineering4030061
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6be849fafb4745fb9d9abc9c6c4d6c02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6be849fafb4745fb9d9abc9c6c4d6c02</doaj_id><sourcerecordid>2124647328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpTwBZ4sJlwd-OL0hoVcpKrXopB06WM5kkXiX2YidI_HvSbqlaxGms8TvPvGNPVb1l9KMQln5qQsLYh4iYQ-wlFZRq9qI65YLqjRJKvnxyPqnOS9lTSpngimv5ujrhtVVcSXpa_djFEvphLiRFclOmNAcgt2nE7CMguUYYfAxlKiREclFgWDvCEDyBNAZy6VcPLelymoiPJB_Sllwvs59Dim-qV50fC54_xLPq-9eL2-23zdXN5W775WoDklO24dbUTLSm5ihqJblCzkEZo2hjagqcYWc6oDVDJThHazRrABlYr8BwQ8VZtTty2-T37pDD5PNvl3xw94mUe-fzOtWITjdYS9v5rpFGqq6xrfUNWNAgWw2Ur6zPR9ZhaSZsAeOc_fgM-vwmhsH16ZdTmilBzQr48ADI6eeCZXZTKIDj6COmpThmpdBK1lyu0vf_SPdpyXF9KscZl1oawetVpY4qyKmUjN2jGUbd3S64_-7CWvfu6SSPVX9_XvwBfl6zSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124647328</pqid></control><display><type>article</type><title>Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Guo, Yuqi ; Winkler, James ; Kao, Katy C</creator><creatorcontrib>Guo, Yuqi ; Winkler, James ; Kao, Katy C</creatorcontrib><description>An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in , suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes and improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in , and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering4030061</identifier><identifier>PMID: 28952540</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetic acid ; amino acid ; Amino acids ; Bacteria ; Binding sites ; Bioengineering ; Cell membranes ; Clonal deletion ; complex phenotype ; Damage assessment ; Damage tolerance ; DNA-directed RNA polymerase ; E coli ; Escherichia coli ; Fermentation ; Gene deletion ; Genes ; Genomics ; membrane integrity ; Metabolism ; Metabolites ; Methionine ; Microorganisms ; Mutation ; Osmosis ; Osmotic stress ; osmotic tolerance ; Potassium ; Proline ; Raw materials ; Ribonucleic acid ; RNA ; RNA polymerase ; rpoC ; Sodium chloride ; Stresses ; Sulfur ; Transcription</subject><ispartof>Bioengineering (Basel), 2017-06, Vol.4 (3), p.61</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703</citedby><cites>FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703</cites><orcidid>0000-0003-0323-8308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2124647328/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2124647328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28952540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Winkler, James</creatorcontrib><creatorcontrib>Kao, Katy C</creatorcontrib><title>Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in , suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes and improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in , and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation.</description><subject>Acetic acid</subject><subject>amino acid</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Bioengineering</subject><subject>Cell membranes</subject><subject>Clonal deletion</subject><subject>complex phenotype</subject><subject>Damage assessment</subject><subject>Damage tolerance</subject><subject>DNA-directed RNA polymerase</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fermentation</subject><subject>Gene deletion</subject><subject>Genes</subject><subject>Genomics</subject><subject>membrane integrity</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methionine</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>Osmosis</subject><subject>Osmotic stress</subject><subject>osmotic tolerance</subject><subject>Potassium</subject><subject>Proline</subject><subject>Raw materials</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>rpoC</subject><subject>Sodium chloride</subject><subject>Stresses</subject><subject>Sulfur</subject><subject>Transcription</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXpTwBZ4sJlwd-OL0hoVcpKrXopB06WM5kkXiX2YidI_HvSbqlaxGms8TvPvGNPVb1l9KMQln5qQsLYh4iYQ-wlFZRq9qI65YLqjRJKvnxyPqnOS9lTSpngimv5ujrhtVVcSXpa_djFEvphLiRFclOmNAcgt2nE7CMguUYYfAxlKiREclFgWDvCEDyBNAZy6VcPLelymoiPJB_Sllwvs59Dim-qV50fC54_xLPq-9eL2-23zdXN5W775WoDklO24dbUTLSm5ihqJblCzkEZo2hjagqcYWc6oDVDJThHazRrABlYr8BwQ8VZtTty2-T37pDD5PNvl3xw94mUe-fzOtWITjdYS9v5rpFGqq6xrfUNWNAgWw2Ur6zPR9ZhaSZsAeOc_fgM-vwmhsH16ZdTmilBzQr48ADI6eeCZXZTKIDj6COmpThmpdBK1lyu0vf_SPdpyXF9KscZl1oawetVpY4qyKmUjN2jGUbd3S64_-7CWvfu6SSPVX9_XvwBfl6zSQ</recordid><startdate>20170628</startdate><enddate>20170628</enddate><creator>Guo, Yuqi</creator><creator>Winkler, James</creator><creator>Kao, Katy C</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0323-8308</orcidid></search><sort><creationdate>20170628</creationdate><title>Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation</title><author>Guo, Yuqi ; Winkler, James ; Kao, Katy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>amino acid</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Bioengineering</topic><topic>Cell membranes</topic><topic>Clonal deletion</topic><topic>complex phenotype</topic><topic>Damage assessment</topic><topic>Damage tolerance</topic><topic>DNA-directed RNA polymerase</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fermentation</topic><topic>Gene deletion</topic><topic>Genes</topic><topic>Genomics</topic><topic>membrane integrity</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methionine</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>Osmosis</topic><topic>Osmotic stress</topic><topic>osmotic tolerance</topic><topic>Potassium</topic><topic>Proline</topic><topic>Raw materials</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>rpoC</topic><topic>Sodium chloride</topic><topic>Stresses</topic><topic>Sulfur</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Winkler, James</creatorcontrib><creatorcontrib>Kao, Katy C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yuqi</au><au>Winkler, James</au><au>Kao, Katy C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2017-06-28</date><risdate>2017</risdate><volume>4</volume><issue>3</issue><spage>61</spage><pages>61-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>An 84 bp in-frame duplication (K370_A396dup) within the rpoC subunit of RNA polymerase was found in two independent mutants selected during an adaptive laboratory evolution experiment under osmotic stress in , suggesting that this mutation confers improved osmotic tolerance. To determine the role this mutation in plays in osmotic tolerance, we reconstructed the mutation in BW25113, and found it to confer improved tolerance to hyperosmotic stress. Metabolite analysis, exogenous supplementation assays, and cell membrane damage analysis suggest that the mechanism of improved osmotic tolerance by this mutation may be related to the higher production of acetic acid and amino acids such as proline, and increased membrane integrity in the presence of NaCl stress in exponential phase cells. Transcriptional analysis led to the findings that the overexpression of methionine related genes and improves osmotic tolerance in BW25113. Furthermore, deletion of a stress related gene was found to confer enhanced osmotic tolerance in BW25113 and MG1655. These findings expand our current understanding of osmotic tolerance in , and have the potential to expand the utilization of high saline feedstocks and water sources in microbial fermentation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28952540</pmid><doi>10.3390/bioengineering4030061</doi><orcidid>https://orcid.org/0000-0003-0323-8308</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2017-06, Vol.4 (3), p.61
issn 2306-5354
2306-5354
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6be849fafb4745fb9d9abc9c6c4d6c02
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Acetic acid
amino acid
Amino acids
Bacteria
Binding sites
Bioengineering
Cell membranes
Clonal deletion
complex phenotype
Damage assessment
Damage tolerance
DNA-directed RNA polymerase
E coli
Escherichia coli
Fermentation
Gene deletion
Genes
Genomics
membrane integrity
Metabolism
Metabolites
Methionine
Microorganisms
Mutation
Osmosis
Osmotic stress
osmotic tolerance
Potassium
Proline
Raw materials
Ribonucleic acid
RNA
RNA polymerase
rpoC
Sodium chloride
Stresses
Sulfur
Transcription
title Insights on Osmotic Tolerance Mechanisms in Escherichia coli Gained from an rpoC Mutation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20on%20Osmotic%20Tolerance%20Mechanisms%20in%20Escherichia%20coli%20Gained%20from%20an%20rpoC%20Mutation&rft.jtitle=Bioengineering%20(Basel)&rft.au=Guo,%20Yuqi&rft.date=2017-06-28&rft.volume=4&rft.issue=3&rft.spage=61&rft.pages=61-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering4030061&rft_dat=%3Cproquest_doaj_%3E2124647328%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4201-297813d782e385425e22c57750b780c21ef7fc081e5322e9761bce1c9a5c72703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124647328&rft_id=info:pmid/28952540&rfr_iscdi=true