Loading…

Atmospheric rivers moisture sources from a Lagrangian perspective

An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into f...

Full description

Saved in:
Bibliographic Details
Published in:Earth system dynamics 2016-04, Vol.7 (2), p.371-384
Main Authors: Ramos, Alexandre M, Nieto, Raquel, Tomé, Ricardo, Gimeno, Luis, Trigo, Ricardo M, Liberato, Margarida L. R, Lavers, David A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3
cites cdi_FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3
container_end_page 384
container_issue 2
container_start_page 371
container_title Earth system dynamics
container_volume 7
creator Ramos, Alexandre M
Nieto, Raquel
Tomé, Ricardo
Gimeno, Luis
Trigo, Ricardo M
Liberato, Margarida L. R
Lavers, David A
description An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75° W, 36–43.75° N), France (4.5° W, 43.75–50° N), UK (4.5° W, 50–59° N), southern Scandinavia and the Netherlands (5.25° E, 50–59° N), and northern Scandinavia (5.25° E, 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART (FLEXible PARTicle dispersion) model global simulation from 1979 to 2012 and was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls.
doi_str_mv 10.5194/esd-7-371-2016
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6beee8987b74405bb965bdb9f2cad03c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A482062460</galeid><doaj_id>oai_doaj_org_article_6beee8987b74405bb965bdb9f2cad03c</doaj_id><sourcerecordid>A482062460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3</originalsourceid><addsrcrecordid>eNp9kl2L1TAQhou44LLurdcFb_Sia77TXB4WPw4cENzd6zBNpzWH06Ymqei_N3VFXVlMAgnD876ZGaaqXlByJakRbzD1jW64pg0jVD2pzhk1pBGm1U__ej-rLlM6krKkYlTI82q3y1NIy2eM3tXRf8WY6in4lNeIdQprdJjqIYaphvoAY4R59DDXS-EWdLkInldnA5wSXv66L6q7d29vrz80h4_v99e7Q-OUULlx4KA1bFAMKeOOgGQMXAdIsO0I9ozxgXSIquXaKMMEFdspAV0UxvGLan_v2wc42iX6CeJ3G8Dbn4EQRwsxe3dCq4oPtqXeTgtBZNcZJbu-MwNz0BO-eb2691pi-LJiynbyyeHpBDOGNVlakuCca00L-vIf9Fi6MpdK7ZajJkYx_j-K6raVkmoq_1AjlCz9PIQcwW1f251oGVFMKFKoq0eosnucvAszDr7EHwhePxAUJuO3PMKakt3ffHrU3MWQUsThdycpsdsk2TJJVtsySXabJP4DH1O30Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788551715</pqid></control><display><type>article</type><title>Atmospheric rivers moisture sources from a Lagrangian perspective</title><source>Publicly Available Content Database</source><creator>Ramos, Alexandre M ; Nieto, Raquel ; Tomé, Ricardo ; Gimeno, Luis ; Trigo, Ricardo M ; Liberato, Margarida L. R ; Lavers, David A</creator><creatorcontrib>Ramos, Alexandre M ; Nieto, Raquel ; Tomé, Ricardo ; Gimeno, Luis ; Trigo, Ricardo M ; Liberato, Margarida L. R ; Lavers, David A</creatorcontrib><description>An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75° W, 36–43.75° N), France (4.5° W, 43.75–50° N), UK (4.5° W, 50–59° N), southern Scandinavia and the Netherlands (5.25° E, 50–59° N), and northern Scandinavia (5.25° E, 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART (FLEXible PARTicle dispersion) model global simulation from 1979 to 2012 and was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls.</description><identifier>ISSN: 2190-4987</identifier><identifier>ISSN: 2190-4979</identifier><identifier>EISSN: 2190-4987</identifier><identifier>DOI: 10.5194/esd-7-371-2016</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Advection ; Algorithms ; Climate ; Coastal zone ; Cold ; Computer simulation ; Domains ; Floods ; Humidity ; Identification ; Landslides &amp; mudslides ; Marine ; Moisture ; Moisture uptake ; Ocean basins ; Oceans ; Precipitation ; Tropical climate ; Uptake</subject><ispartof>Earth system dynamics, 2016-04, Vol.7 (2), p.371-384</ispartof><rights>COPYRIGHT 2016 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3</citedby><cites>FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3</cites><orcidid>0000-0003-3129-7233 ; 0000-0002-6677-9366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414709623/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414709623?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Ramos, Alexandre M</creatorcontrib><creatorcontrib>Nieto, Raquel</creatorcontrib><creatorcontrib>Tomé, Ricardo</creatorcontrib><creatorcontrib>Gimeno, Luis</creatorcontrib><creatorcontrib>Trigo, Ricardo M</creatorcontrib><creatorcontrib>Liberato, Margarida L. R</creatorcontrib><creatorcontrib>Lavers, David A</creatorcontrib><title>Atmospheric rivers moisture sources from a Lagrangian perspective</title><title>Earth system dynamics</title><description>An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75° W, 36–43.75° N), France (4.5° W, 43.75–50° N), UK (4.5° W, 50–59° N), southern Scandinavia and the Netherlands (5.25° E, 50–59° N), and northern Scandinavia (5.25° E, 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART (FLEXible PARTicle dispersion) model global simulation from 1979 to 2012 and was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls.</description><subject>Advection</subject><subject>Algorithms</subject><subject>Climate</subject><subject>Coastal zone</subject><subject>Cold</subject><subject>Computer simulation</subject><subject>Domains</subject><subject>Floods</subject><subject>Humidity</subject><subject>Identification</subject><subject>Landslides &amp; mudslides</subject><subject>Marine</subject><subject>Moisture</subject><subject>Moisture uptake</subject><subject>Ocean basins</subject><subject>Oceans</subject><subject>Precipitation</subject><subject>Tropical climate</subject><subject>Uptake</subject><issn>2190-4987</issn><issn>2190-4979</issn><issn>2190-4987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl2L1TAQhou44LLurdcFb_Sia77TXB4WPw4cENzd6zBNpzWH06Ymqei_N3VFXVlMAgnD876ZGaaqXlByJakRbzD1jW64pg0jVD2pzhk1pBGm1U__ej-rLlM6krKkYlTI82q3y1NIy2eM3tXRf8WY6in4lNeIdQprdJjqIYaphvoAY4R59DDXS-EWdLkInldnA5wSXv66L6q7d29vrz80h4_v99e7Q-OUULlx4KA1bFAMKeOOgGQMXAdIsO0I9ozxgXSIquXaKMMEFdspAV0UxvGLan_v2wc42iX6CeJ3G8Dbn4EQRwsxe3dCq4oPtqXeTgtBZNcZJbu-MwNz0BO-eb2691pi-LJiynbyyeHpBDOGNVlakuCca00L-vIf9Fi6MpdK7ZajJkYx_j-K6raVkmoq_1AjlCz9PIQcwW1f251oGVFMKFKoq0eosnucvAszDr7EHwhePxAUJuO3PMKakt3ffHrU3MWQUsThdycpsdsk2TJJVtsySXabJP4DH1O30Q</recordid><startdate>20160422</startdate><enddate>20160422</enddate><creator>Ramos, Alexandre M</creator><creator>Nieto, Raquel</creator><creator>Tomé, Ricardo</creator><creator>Gimeno, Luis</creator><creator>Trigo, Ricardo M</creator><creator>Liberato, Margarida L. R</creator><creator>Lavers, David A</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3129-7233</orcidid><orcidid>https://orcid.org/0000-0002-6677-9366</orcidid></search><sort><creationdate>20160422</creationdate><title>Atmospheric rivers moisture sources from a Lagrangian perspective</title><author>Ramos, Alexandre M ; Nieto, Raquel ; Tomé, Ricardo ; Gimeno, Luis ; Trigo, Ricardo M ; Liberato, Margarida L. R ; Lavers, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advection</topic><topic>Algorithms</topic><topic>Climate</topic><topic>Coastal zone</topic><topic>Cold</topic><topic>Computer simulation</topic><topic>Domains</topic><topic>Floods</topic><topic>Humidity</topic><topic>Identification</topic><topic>Landslides &amp; mudslides</topic><topic>Marine</topic><topic>Moisture</topic><topic>Moisture uptake</topic><topic>Ocean basins</topic><topic>Oceans</topic><topic>Precipitation</topic><topic>Tropical climate</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Alexandre M</creatorcontrib><creatorcontrib>Nieto, Raquel</creatorcontrib><creatorcontrib>Tomé, Ricardo</creatorcontrib><creatorcontrib>Gimeno, Luis</creatorcontrib><creatorcontrib>Trigo, Ricardo M</creatorcontrib><creatorcontrib>Liberato, Margarida L. R</creatorcontrib><creatorcontrib>Lavers, David A</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Alexandre M</au><au>Nieto, Raquel</au><au>Tomé, Ricardo</au><au>Gimeno, Luis</au><au>Trigo, Ricardo M</au><au>Liberato, Margarida L. R</au><au>Lavers, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric rivers moisture sources from a Lagrangian perspective</atitle><jtitle>Earth system dynamics</jtitle><date>2016-04-22</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><spage>371</spage><epage>384</epage><pages>371-384</pages><issn>2190-4987</issn><issn>2190-4979</issn><eissn>2190-4987</eissn><abstract>An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75° W, 36–43.75° N), France (4.5° W, 43.75–50° N), UK (4.5° W, 50–59° N), southern Scandinavia and the Netherlands (5.25° E, 50–59° N), and northern Scandinavia (5.25° E, 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART (FLEXible PARTicle dispersion) model global simulation from 1979 to 2012 and was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/esd-7-371-2016</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3129-7233</orcidid><orcidid>https://orcid.org/0000-0002-6677-9366</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-4987
ispartof Earth system dynamics, 2016-04, Vol.7 (2), p.371-384
issn 2190-4987
2190-4979
2190-4987
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6beee8987b74405bb965bdb9f2cad03c
source Publicly Available Content Database
subjects Advection
Algorithms
Climate
Coastal zone
Cold
Computer simulation
Domains
Floods
Humidity
Identification
Landslides & mudslides
Marine
Moisture
Moisture uptake
Ocean basins
Oceans
Precipitation
Tropical climate
Uptake
title Atmospheric rivers moisture sources from a Lagrangian perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20rivers%20moisture%20sources%20from%20a%20Lagrangian%20perspective&rft.jtitle=Earth%20system%20dynamics&rft.au=Ramos,%20Alexandre%20M&rft.date=2016-04-22&rft.volume=7&rft.issue=2&rft.spage=371&rft.epage=384&rft.pages=371-384&rft.issn=2190-4987&rft.eissn=2190-4987&rft_id=info:doi/10.5194/esd-7-371-2016&rft_dat=%3Cgale_doaj_%3EA482062460%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788551715&rft_id=info:pmid/&rft_galeid=A482062460&rfr_iscdi=true