Loading…
Atmospheric rivers moisture sources from a Lagrangian perspective
An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into f...
Saved in:
Published in: | Earth system dynamics 2016-04, Vol.7 (2), p.371-384 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3 |
container_end_page | 384 |
container_issue | 2 |
container_start_page | 371 |
container_title | Earth system dynamics |
container_volume | 7 |
creator | Ramos, Alexandre M Nieto, Raquel Tomé, Ricardo Gimeno, Luis Trigo, Ricardo M Liberato, Margarida L. R Lavers, David A |
description | An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75° W, 36–43.75° N), France (4.5° W, 43.75–50° N), UK (4.5° W, 50–59° N), southern Scandinavia and the Netherlands (5.25° E, 50–59° N), and northern Scandinavia (5.25° E, 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART (FLEXible PARTicle dispersion) model global simulation from 1979 to 2012 and was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls. |
doi_str_mv | 10.5194/esd-7-371-2016 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6beee8987b74405bb965bdb9f2cad03c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A482062460</galeid><doaj_id>oai_doaj_org_article_6beee8987b74405bb965bdb9f2cad03c</doaj_id><sourcerecordid>A482062460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3</originalsourceid><addsrcrecordid>eNp9kl2L1TAQhou44LLurdcFb_Sia77TXB4WPw4cENzd6zBNpzWH06Ymqei_N3VFXVlMAgnD876ZGaaqXlByJakRbzD1jW64pg0jVD2pzhk1pBGm1U__ej-rLlM6krKkYlTI82q3y1NIy2eM3tXRf8WY6in4lNeIdQprdJjqIYaphvoAY4R59DDXS-EWdLkInldnA5wSXv66L6q7d29vrz80h4_v99e7Q-OUULlx4KA1bFAMKeOOgGQMXAdIsO0I9ozxgXSIquXaKMMEFdspAV0UxvGLan_v2wc42iX6CeJ3G8Dbn4EQRwsxe3dCq4oPtqXeTgtBZNcZJbu-MwNz0BO-eb2691pi-LJiynbyyeHpBDOGNVlakuCca00L-vIf9Fi6MpdK7ZajJkYx_j-K6raVkmoq_1AjlCz9PIQcwW1f251oGVFMKFKoq0eosnucvAszDr7EHwhePxAUJuO3PMKakt3ffHrU3MWQUsThdycpsdsk2TJJVtsySXabJP4DH1O30Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788551715</pqid></control><display><type>article</type><title>Atmospheric rivers moisture sources from a Lagrangian perspective</title><source>Publicly Available Content Database</source><creator>Ramos, Alexandre M ; Nieto, Raquel ; Tomé, Ricardo ; Gimeno, Luis ; Trigo, Ricardo M ; Liberato, Margarida L. R ; Lavers, David A</creator><creatorcontrib>Ramos, Alexandre M ; Nieto, Raquel ; Tomé, Ricardo ; Gimeno, Luis ; Trigo, Ricardo M ; Liberato, Margarida L. R ; Lavers, David A</creatorcontrib><description>An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75° W, 36–43.75° N), France (4.5° W, 43.75–50° N), UK (4.5° W, 50–59° N), southern Scandinavia and the Netherlands (5.25° E, 50–59° N), and northern Scandinavia (5.25° E, 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART (FLEXible PARTicle dispersion) model global simulation from 1979 to 2012 and was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls.</description><identifier>ISSN: 2190-4987</identifier><identifier>ISSN: 2190-4979</identifier><identifier>EISSN: 2190-4987</identifier><identifier>DOI: 10.5194/esd-7-371-2016</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Advection ; Algorithms ; Climate ; Coastal zone ; Cold ; Computer simulation ; Domains ; Floods ; Humidity ; Identification ; Landslides & mudslides ; Marine ; Moisture ; Moisture uptake ; Ocean basins ; Oceans ; Precipitation ; Tropical climate ; Uptake</subject><ispartof>Earth system dynamics, 2016-04, Vol.7 (2), p.371-384</ispartof><rights>COPYRIGHT 2016 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3</citedby><cites>FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3</cites><orcidid>0000-0003-3129-7233 ; 0000-0002-6677-9366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414709623/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414709623?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Ramos, Alexandre M</creatorcontrib><creatorcontrib>Nieto, Raquel</creatorcontrib><creatorcontrib>Tomé, Ricardo</creatorcontrib><creatorcontrib>Gimeno, Luis</creatorcontrib><creatorcontrib>Trigo, Ricardo M</creatorcontrib><creatorcontrib>Liberato, Margarida L. R</creatorcontrib><creatorcontrib>Lavers, David A</creatorcontrib><title>Atmospheric rivers moisture sources from a Lagrangian perspective</title><title>Earth system dynamics</title><description>An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75° W, 36–43.75° N), France (4.5° W, 43.75–50° N), UK (4.5° W, 50–59° N), southern Scandinavia and the Netherlands (5.25° E, 50–59° N), and northern Scandinavia (5.25° E, 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART (FLEXible PARTicle dispersion) model global simulation from 1979 to 2012 and was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls.</description><subject>Advection</subject><subject>Algorithms</subject><subject>Climate</subject><subject>Coastal zone</subject><subject>Cold</subject><subject>Computer simulation</subject><subject>Domains</subject><subject>Floods</subject><subject>Humidity</subject><subject>Identification</subject><subject>Landslides & mudslides</subject><subject>Marine</subject><subject>Moisture</subject><subject>Moisture uptake</subject><subject>Ocean basins</subject><subject>Oceans</subject><subject>Precipitation</subject><subject>Tropical climate</subject><subject>Uptake</subject><issn>2190-4987</issn><issn>2190-4979</issn><issn>2190-4987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl2L1TAQhou44LLurdcFb_Sia77TXB4WPw4cENzd6zBNpzWH06Ymqei_N3VFXVlMAgnD876ZGaaqXlByJakRbzD1jW64pg0jVD2pzhk1pBGm1U__ej-rLlM6krKkYlTI82q3y1NIy2eM3tXRf8WY6in4lNeIdQprdJjqIYaphvoAY4R59DDXS-EWdLkInldnA5wSXv66L6q7d29vrz80h4_v99e7Q-OUULlx4KA1bFAMKeOOgGQMXAdIsO0I9ozxgXSIquXaKMMEFdspAV0UxvGLan_v2wc42iX6CeJ3G8Dbn4EQRwsxe3dCq4oPtqXeTgtBZNcZJbu-MwNz0BO-eb2691pi-LJiynbyyeHpBDOGNVlakuCca00L-vIf9Fi6MpdK7ZajJkYx_j-K6raVkmoq_1AjlCz9PIQcwW1f251oGVFMKFKoq0eosnucvAszDr7EHwhePxAUJuO3PMKakt3ffHrU3MWQUsThdycpsdsk2TJJVtsySXabJP4DH1O30Q</recordid><startdate>20160422</startdate><enddate>20160422</enddate><creator>Ramos, Alexandre M</creator><creator>Nieto, Raquel</creator><creator>Tomé, Ricardo</creator><creator>Gimeno, Luis</creator><creator>Trigo, Ricardo M</creator><creator>Liberato, Margarida L. R</creator><creator>Lavers, David A</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3129-7233</orcidid><orcidid>https://orcid.org/0000-0002-6677-9366</orcidid></search><sort><creationdate>20160422</creationdate><title>Atmospheric rivers moisture sources from a Lagrangian perspective</title><author>Ramos, Alexandre M ; Nieto, Raquel ; Tomé, Ricardo ; Gimeno, Luis ; Trigo, Ricardo M ; Liberato, Margarida L. R ; Lavers, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advection</topic><topic>Algorithms</topic><topic>Climate</topic><topic>Coastal zone</topic><topic>Cold</topic><topic>Computer simulation</topic><topic>Domains</topic><topic>Floods</topic><topic>Humidity</topic><topic>Identification</topic><topic>Landslides & mudslides</topic><topic>Marine</topic><topic>Moisture</topic><topic>Moisture uptake</topic><topic>Ocean basins</topic><topic>Oceans</topic><topic>Precipitation</topic><topic>Tropical climate</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Alexandre M</creatorcontrib><creatorcontrib>Nieto, Raquel</creatorcontrib><creatorcontrib>Tomé, Ricardo</creatorcontrib><creatorcontrib>Gimeno, Luis</creatorcontrib><creatorcontrib>Trigo, Ricardo M</creatorcontrib><creatorcontrib>Liberato, Margarida L. R</creatorcontrib><creatorcontrib>Lavers, David A</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Alexandre M</au><au>Nieto, Raquel</au><au>Tomé, Ricardo</au><au>Gimeno, Luis</au><au>Trigo, Ricardo M</au><au>Liberato, Margarida L. R</au><au>Lavers, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric rivers moisture sources from a Lagrangian perspective</atitle><jtitle>Earth system dynamics</jtitle><date>2016-04-22</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><spage>371</spage><epage>384</epage><pages>371-384</pages><issn>2190-4987</issn><issn>2190-4979</issn><eissn>2190-4987</eissn><abstract>An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012 over the winter half-year (October to March). The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75° W, 36–43.75° N), France (4.5° W, 43.75–50° N), UK (4.5° W, 50–59° N), southern Scandinavia and the Netherlands (5.25° E, 50–59° N), and northern Scandinavia (5.25° E, 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART (FLEXible PARTicle dispersion) model global simulation from 1979 to 2012 and was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/esd-7-371-2016</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3129-7233</orcidid><orcidid>https://orcid.org/0000-0002-6677-9366</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-4987 |
ispartof | Earth system dynamics, 2016-04, Vol.7 (2), p.371-384 |
issn | 2190-4987 2190-4979 2190-4987 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6beee8987b74405bb965bdb9f2cad03c |
source | Publicly Available Content Database |
subjects | Advection Algorithms Climate Coastal zone Cold Computer simulation Domains Floods Humidity Identification Landslides & mudslides Marine Moisture Moisture uptake Ocean basins Oceans Precipitation Tropical climate Uptake |
title | Atmospheric rivers moisture sources from a Lagrangian perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20rivers%20moisture%20sources%20from%20a%20Lagrangian%20perspective&rft.jtitle=Earth%20system%20dynamics&rft.au=Ramos,%20Alexandre%20M&rft.date=2016-04-22&rft.volume=7&rft.issue=2&rft.spage=371&rft.epage=384&rft.pages=371-384&rft.issn=2190-4987&rft.eissn=2190-4987&rft_id=info:doi/10.5194/esd-7-371-2016&rft_dat=%3Cgale_doaj_%3EA482062460%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c646t-caca892f62e123c0a522acbae0e8b0ed223f0bee683796924144144ee672e19c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788551715&rft_id=info:pmid/&rft_galeid=A482062460&rfr_iscdi=true |