Loading…
Improved susceptible-infectious-susceptible epidemic equations based on uncertainties and autocorrelation functions
Compartmental equations are primary tools in the study of disease spreading processes. They provide accurate predictions for large populations but poor results whenever the integer nature of the number of agents is evident. In the latter instance, uncertainties are relevant factors for pathogen tran...
Saved in:
Published in: | Royal Society open science 2020-02, Vol.7 (2), p.191504-191504 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compartmental equations are primary tools in the study of disease spreading processes. They provide accurate predictions for large populations but poor results whenever the integer nature of the number of agents is evident. In the latter instance, uncertainties are relevant factors for pathogen transmission. Starting from the agent-based approach, we investigate the role of uncertainties and autocorrelation functions in the susceptible-infectious-susceptible (SIS) epidemic model, including their relationship with epidemiological variables. We find new differential equations that take uncertainties into account. The findings provide improved equations, offering new insights on disease spreading processes. |
---|---|
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.191504 |