Loading…

Phybers: a package for brain tractography analysis

We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentatio...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience 2024-03, Vol.18, p.1333243-1333243
Main Authors: González Rodríguez, Lazara Liset, Osorio, Ignacio, Cofre G, Alejandro, Hernandez Larzabal, Hernan, Román, Claudio, Poupon, Cyril, Mangin, Jean-François, Hernández, Cecilia, Guevara, Pamela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3
container_end_page 1333243
container_issue
container_start_page 1333243
container_title Frontiers in neuroscience
container_volume 18
creator González Rodríguez, Lazara Liset
Osorio, Ignacio
Cofre G, Alejandro
Hernandez Larzabal, Hernan
Román, Claudio
Poupon, Cyril
Mangin, Jean-François
Hernández, Cecilia
Guevara, Pamela
description We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the library.
doi_str_mv 10.3389/fnins.2024.1333243
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c1c0ce5d4774b11914033a0bea555f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c1c0ce5d4774b11914033a0bea555f4</doaj_id><sourcerecordid>3003436747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3</originalsourceid><addsrcrecordid>eNpVkcFuEzEQhi0EoiXwAhzQHrkk2DNer5cLQhXQSpXgABI3a-wdJ1s262BvKuXtSZo0oidbnpnvH-sT4q2SC0TbfohjP5YFSNALhYig8Zm4VMbAXNf4-_n5ru2FeFXKnZQGrIaX4gJtDS0Ycyngx2rnOZePFVUbCn9oyVVMufKZ-rGaMoUpLTNtVruKRhp2pS-vxYtIQ-E3p3Mmfn398vPqen77_dvN1efbedAgp3kTgQA0e4gsa6OMB8uxC9jUir3soDMhKhm7qLFrG-t9C601FkITjYyMM3Fz5HaJ7twm92vKO5eodw8PKS8d5akPAzsTVJCB6043jfZKtUpLRJKeqa7rfcBMfDqyNlu_5i7wuP_a8AT6tDL2K7dM907J1gDaZk94fyLk9HfLZXLrvgQeBho5bYtDKVGjafShFY6tIadSMsdzjpLuYM49mHMHc-5kbj_07v8NzyOPqvAf9GSVwg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003436747</pqid></control><display><type>article</type><title>Phybers: a package for brain tractography analysis</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central Free</source><creator>González Rodríguez, Lazara Liset ; Osorio, Ignacio ; Cofre G, Alejandro ; Hernandez Larzabal, Hernan ; Román, Claudio ; Poupon, Cyril ; Mangin, Jean-François ; Hernández, Cecilia ; Guevara, Pamela</creator><creatorcontrib>González Rodríguez, Lazara Liset ; Osorio, Ignacio ; Cofre G, Alejandro ; Hernandez Larzabal, Hernan ; Román, Claudio ; Poupon, Cyril ; Mangin, Jean-François ; Hernández, Cecilia ; Guevara, Pamela</creatorcontrib><description>We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the library.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2024.1333243</identifier><identifier>PMID: 38529266</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>bundle atlas ; diffusion MRI ; fiber clustering ; Neuroscience ; python ; tractography ; white matter segmentation</subject><ispartof>Frontiers in neuroscience, 2024-03, Vol.18, p.1333243-1333243</ispartof><rights>Copyright © 2024 González Rodríguez, Osorio, Cofre G., Hernandez Larzabal, Román, Poupon, Mangin, Hernández and Guevara.</rights><rights>Copyright © 2024 González Rodríguez, Osorio, Cofre G., Hernandez Larzabal, Román, Poupon, Mangin, Hernández and Guevara. 2024 González Rodríguez, Osorio, Cofre G., Hernandez Larzabal, Román, Poupon, Mangin, Hernández and Guevara</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962387/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962387/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38529266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González Rodríguez, Lazara Liset</creatorcontrib><creatorcontrib>Osorio, Ignacio</creatorcontrib><creatorcontrib>Cofre G, Alejandro</creatorcontrib><creatorcontrib>Hernandez Larzabal, Hernan</creatorcontrib><creatorcontrib>Román, Claudio</creatorcontrib><creatorcontrib>Poupon, Cyril</creatorcontrib><creatorcontrib>Mangin, Jean-François</creatorcontrib><creatorcontrib>Hernández, Cecilia</creatorcontrib><creatorcontrib>Guevara, Pamela</creatorcontrib><title>Phybers: a package for brain tractography analysis</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the library.</description><subject>bundle atlas</subject><subject>diffusion MRI</subject><subject>fiber clustering</subject><subject>Neuroscience</subject><subject>python</subject><subject>tractography</subject><subject>white matter segmentation</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkcFuEzEQhi0EoiXwAhzQHrkk2DNer5cLQhXQSpXgABI3a-wdJ1s262BvKuXtSZo0oidbnpnvH-sT4q2SC0TbfohjP5YFSNALhYig8Zm4VMbAXNf4-_n5ru2FeFXKnZQGrIaX4gJtDS0Ycyngx2rnOZePFVUbCn9oyVVMufKZ-rGaMoUpLTNtVruKRhp2pS-vxYtIQ-E3p3Mmfn398vPqen77_dvN1efbedAgp3kTgQA0e4gsa6OMB8uxC9jUir3soDMhKhm7qLFrG-t9C601FkITjYyMM3Fz5HaJ7twm92vKO5eodw8PKS8d5akPAzsTVJCB6043jfZKtUpLRJKeqa7rfcBMfDqyNlu_5i7wuP_a8AT6tDL2K7dM907J1gDaZk94fyLk9HfLZXLrvgQeBho5bYtDKVGjafShFY6tIadSMsdzjpLuYM49mHMHc-5kbj_07v8NzyOPqvAf9GSVwg</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>González Rodríguez, Lazara Liset</creator><creator>Osorio, Ignacio</creator><creator>Cofre G, Alejandro</creator><creator>Hernandez Larzabal, Hernan</creator><creator>Román, Claudio</creator><creator>Poupon, Cyril</creator><creator>Mangin, Jean-François</creator><creator>Hernández, Cecilia</creator><creator>Guevara, Pamela</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240311</creationdate><title>Phybers: a package for brain tractography analysis</title><author>González Rodríguez, Lazara Liset ; Osorio, Ignacio ; Cofre G, Alejandro ; Hernandez Larzabal, Hernan ; Román, Claudio ; Poupon, Cyril ; Mangin, Jean-François ; Hernández, Cecilia ; Guevara, Pamela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bundle atlas</topic><topic>diffusion MRI</topic><topic>fiber clustering</topic><topic>Neuroscience</topic><topic>python</topic><topic>tractography</topic><topic>white matter segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González Rodríguez, Lazara Liset</creatorcontrib><creatorcontrib>Osorio, Ignacio</creatorcontrib><creatorcontrib>Cofre G, Alejandro</creatorcontrib><creatorcontrib>Hernandez Larzabal, Hernan</creatorcontrib><creatorcontrib>Román, Claudio</creatorcontrib><creatorcontrib>Poupon, Cyril</creatorcontrib><creatorcontrib>Mangin, Jean-François</creatorcontrib><creatorcontrib>Hernández, Cecilia</creatorcontrib><creatorcontrib>Guevara, Pamela</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González Rodríguez, Lazara Liset</au><au>Osorio, Ignacio</au><au>Cofre G, Alejandro</au><au>Hernandez Larzabal, Hernan</au><au>Román, Claudio</au><au>Poupon, Cyril</au><au>Mangin, Jean-François</au><au>Hernández, Cecilia</au><au>Guevara, Pamela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phybers: a package for brain tractography analysis</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2024-03-11</date><risdate>2024</risdate><volume>18</volume><spage>1333243</spage><epage>1333243</epage><pages>1333243-1333243</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the library.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>38529266</pmid><doi>10.3389/fnins.2024.1333243</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-4548
ispartof Frontiers in neuroscience, 2024-03, Vol.18, p.1333243-1333243
issn 1662-4548
1662-453X
1662-453X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6c1c0ce5d4774b11914033a0bea555f4
source Access via ProQuest (Open Access); PubMed Central Free
subjects bundle atlas
diffusion MRI
fiber clustering
Neuroscience
python
tractography
white matter segmentation
title Phybers: a package for brain tractography analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phybers:%20a%20package%20for%20brain%20tractography%20analysis&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Gonz%C3%A1lez%20Rodr%C3%ADguez,%20Lazara%20Liset&rft.date=2024-03-11&rft.volume=18&rft.spage=1333243&rft.epage=1333243&rft.pages=1333243-1333243&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2024.1333243&rft_dat=%3Cproquest_doaj_%3E3003436747%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003436747&rft_id=info:pmid/38529266&rfr_iscdi=true