Loading…
Phybers: a package for brain tractography analysis
We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentatio...
Saved in:
Published in: | Frontiers in neuroscience 2024-03, Vol.18, p.1333243-1333243 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3 |
container_end_page | 1333243 |
container_issue | |
container_start_page | 1333243 |
container_title | Frontiers in neuroscience |
container_volume | 18 |
creator | González Rodríguez, Lazara Liset Osorio, Ignacio Cofre G, Alejandro Hernandez Larzabal, Hernan Román, Claudio Poupon, Cyril Mangin, Jean-François Hernández, Cecilia Guevara, Pamela |
description | We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the
library. |
doi_str_mv | 10.3389/fnins.2024.1333243 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c1c0ce5d4774b11914033a0bea555f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c1c0ce5d4774b11914033a0bea555f4</doaj_id><sourcerecordid>3003436747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3</originalsourceid><addsrcrecordid>eNpVkcFuEzEQhi0EoiXwAhzQHrkk2DNer5cLQhXQSpXgABI3a-wdJ1s262BvKuXtSZo0oidbnpnvH-sT4q2SC0TbfohjP5YFSNALhYig8Zm4VMbAXNf4-_n5ru2FeFXKnZQGrIaX4gJtDS0Ycyngx2rnOZePFVUbCn9oyVVMufKZ-rGaMoUpLTNtVruKRhp2pS-vxYtIQ-E3p3Mmfn398vPqen77_dvN1efbedAgp3kTgQA0e4gsa6OMB8uxC9jUir3soDMhKhm7qLFrG-t9C601FkITjYyMM3Fz5HaJ7twm92vKO5eodw8PKS8d5akPAzsTVJCB6043jfZKtUpLRJKeqa7rfcBMfDqyNlu_5i7wuP_a8AT6tDL2K7dM907J1gDaZk94fyLk9HfLZXLrvgQeBho5bYtDKVGjafShFY6tIadSMsdzjpLuYM49mHMHc-5kbj_07v8NzyOPqvAf9GSVwg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003436747</pqid></control><display><type>article</type><title>Phybers: a package for brain tractography analysis</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central Free</source><creator>González Rodríguez, Lazara Liset ; Osorio, Ignacio ; Cofre G, Alejandro ; Hernandez Larzabal, Hernan ; Román, Claudio ; Poupon, Cyril ; Mangin, Jean-François ; Hernández, Cecilia ; Guevara, Pamela</creator><creatorcontrib>González Rodríguez, Lazara Liset ; Osorio, Ignacio ; Cofre G, Alejandro ; Hernandez Larzabal, Hernan ; Román, Claudio ; Poupon, Cyril ; Mangin, Jean-François ; Hernández, Cecilia ; Guevara, Pamela</creatorcontrib><description>We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the
library.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2024.1333243</identifier><identifier>PMID: 38529266</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>bundle atlas ; diffusion MRI ; fiber clustering ; Neuroscience ; python ; tractography ; white matter segmentation</subject><ispartof>Frontiers in neuroscience, 2024-03, Vol.18, p.1333243-1333243</ispartof><rights>Copyright © 2024 González Rodríguez, Osorio, Cofre G., Hernandez Larzabal, Román, Poupon, Mangin, Hernández and Guevara.</rights><rights>Copyright © 2024 González Rodríguez, Osorio, Cofre G., Hernandez Larzabal, Román, Poupon, Mangin, Hernández and Guevara. 2024 González Rodríguez, Osorio, Cofre G., Hernandez Larzabal, Román, Poupon, Mangin, Hernández and Guevara</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962387/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962387/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38529266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González Rodríguez, Lazara Liset</creatorcontrib><creatorcontrib>Osorio, Ignacio</creatorcontrib><creatorcontrib>Cofre G, Alejandro</creatorcontrib><creatorcontrib>Hernandez Larzabal, Hernan</creatorcontrib><creatorcontrib>Román, Claudio</creatorcontrib><creatorcontrib>Poupon, Cyril</creatorcontrib><creatorcontrib>Mangin, Jean-François</creatorcontrib><creatorcontrib>Hernández, Cecilia</creatorcontrib><creatorcontrib>Guevara, Pamela</creatorcontrib><title>Phybers: a package for brain tractography analysis</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the
library.</description><subject>bundle atlas</subject><subject>diffusion MRI</subject><subject>fiber clustering</subject><subject>Neuroscience</subject><subject>python</subject><subject>tractography</subject><subject>white matter segmentation</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkcFuEzEQhi0EoiXwAhzQHrkk2DNer5cLQhXQSpXgABI3a-wdJ1s262BvKuXtSZo0oidbnpnvH-sT4q2SC0TbfohjP5YFSNALhYig8Zm4VMbAXNf4-_n5ru2FeFXKnZQGrIaX4gJtDS0Ycyngx2rnOZePFVUbCn9oyVVMufKZ-rGaMoUpLTNtVruKRhp2pS-vxYtIQ-E3p3Mmfn398vPqen77_dvN1efbedAgp3kTgQA0e4gsa6OMB8uxC9jUir3soDMhKhm7qLFrG-t9C601FkITjYyMM3Fz5HaJ7twm92vKO5eodw8PKS8d5akPAzsTVJCB6043jfZKtUpLRJKeqa7rfcBMfDqyNlu_5i7wuP_a8AT6tDL2K7dM907J1gDaZk94fyLk9HfLZXLrvgQeBho5bYtDKVGjafShFY6tIadSMsdzjpLuYM49mHMHc-5kbj_07v8NzyOPqvAf9GSVwg</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>González Rodríguez, Lazara Liset</creator><creator>Osorio, Ignacio</creator><creator>Cofre G, Alejandro</creator><creator>Hernandez Larzabal, Hernan</creator><creator>Román, Claudio</creator><creator>Poupon, Cyril</creator><creator>Mangin, Jean-François</creator><creator>Hernández, Cecilia</creator><creator>Guevara, Pamela</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240311</creationdate><title>Phybers: a package for brain tractography analysis</title><author>González Rodríguez, Lazara Liset ; Osorio, Ignacio ; Cofre G, Alejandro ; Hernandez Larzabal, Hernan ; Román, Claudio ; Poupon, Cyril ; Mangin, Jean-François ; Hernández, Cecilia ; Guevara, Pamela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bundle atlas</topic><topic>diffusion MRI</topic><topic>fiber clustering</topic><topic>Neuroscience</topic><topic>python</topic><topic>tractography</topic><topic>white matter segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González Rodríguez, Lazara Liset</creatorcontrib><creatorcontrib>Osorio, Ignacio</creatorcontrib><creatorcontrib>Cofre G, Alejandro</creatorcontrib><creatorcontrib>Hernandez Larzabal, Hernan</creatorcontrib><creatorcontrib>Román, Claudio</creatorcontrib><creatorcontrib>Poupon, Cyril</creatorcontrib><creatorcontrib>Mangin, Jean-François</creatorcontrib><creatorcontrib>Hernández, Cecilia</creatorcontrib><creatorcontrib>Guevara, Pamela</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González Rodríguez, Lazara Liset</au><au>Osorio, Ignacio</au><au>Cofre G, Alejandro</au><au>Hernandez Larzabal, Hernan</au><au>Román, Claudio</au><au>Poupon, Cyril</au><au>Mangin, Jean-François</au><au>Hernández, Cecilia</au><au>Guevara, Pamela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phybers: a package for brain tractography analysis</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2024-03-11</date><risdate>2024</risdate><volume>18</volume><spage>1333243</spage><epage>1333243</epage><pages>1333243-1333243</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the
library.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>38529266</pmid><doi>10.3389/fnins.2024.1333243</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2024-03, Vol.18, p.1333243-1333243 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6c1c0ce5d4774b11914033a0bea555f4 |
source | Access via ProQuest (Open Access); PubMed Central Free |
subjects | bundle atlas diffusion MRI fiber clustering Neuroscience python tractography white matter segmentation |
title | Phybers: a package for brain tractography analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phybers:%20a%20package%20for%20brain%20tractography%20analysis&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Gonz%C3%A1lez%20Rodr%C3%ADguez,%20Lazara%20Liset&rft.date=2024-03-11&rft.volume=18&rft.spage=1333243&rft.epage=1333243&rft.pages=1333243-1333243&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2024.1333243&rft_dat=%3Cproquest_doaj_%3E3003436747%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-7f2a224eb2fe05616b28efdc3751eb0d2d6cf10fdf43d978bb9298682c7f60fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003436747&rft_id=info:pmid/38529266&rfr_iscdi=true |