Loading…

Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems

The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2018-01, Vol.18 (2), p.361
Main Authors: Li, Qingzhu, Li, Zhining, Zhang, Yingtang, Yin, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3
cites cdi_FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3
container_end_page
container_issue 2
container_start_page 361
container_title Sensors (Basel, Switzerland)
container_volume 18
creator Li, Qingzhu
Li, Zhining
Zhang, Yingtang
Yin, Gang
description The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor's system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg-Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the "overcalibration" problem. The accuracy of the error parameters' estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust.
doi_str_mv 10.3390/s18020361
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c1ec73bf78040e3889b4b7d12daf3b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c1ec73bf78040e3889b4b7d12daf3b5</doaj_id><sourcerecordid>1992009420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqVw4A-glbjQQ2D8tWtfkKpQSqVWHCi9Wl7vOHW0sYvtIPXf45IStZxszTx69M4MIW8pfORcw6dCFTDgPX1GDqlgYqEYg-eP_gfkVSlrAMY5Vy_JAdN84FKIQ3J9kmvwwQU7d9foasrd0s5hzLaGFLtLrDdp6nwrfwneY8boQlx1l3YVsQbXnWU7BYy1u8JYGvXjrlTclNfkhbdzwTcP7xH5-fX0avltcfH97Hx5crFwotd1wSc5SOlbTkpbTHQ9R9k62rFe0ZFKKsBRPaDASSoBMCraq8FS4JRLZvkROd95p2TX5jaHjc13Jtlg_hZSXhnbBnQzmt5RdAMf_aBAAHKl9CjGYaJssp6Psrk-71y323GDk2tTZTs_kT7txHBjVum3kUpKyaEJPjwIcvq1xVLNJhSH82wjpm0xVGsGoAW7R9__h67TNse2KtNWARSkhL5RxzvK5VRKRr8PQ8HcX97sL9_Yd4_T78l_p-Z_AJVTpo8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110105506</pqid></control><display><type>article</type><title>Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Li, Qingzhu ; Li, Zhining ; Zhang, Yingtang ; Yin, Gang</creator><creatorcontrib>Li, Qingzhu ; Li, Zhining ; Zhang, Yingtang ; Yin, Gang</creatorcontrib><description>The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor's system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg-Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the "overcalibration" problem. The accuracy of the error parameters' estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s18020361</identifier><identifier>PMID: 29373544</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>artificial reference ; Calibration ; Computer simulation ; Coordinates ; Error analysis ; Error detection ; least-squares method ; Linear equations ; magnetic gradient tensor system ; Misalignment ; Parameter estimation ; Root-mean-square errors ; Sensor arrays ; Sensors ; Variation ; vector calibration</subject><ispartof>Sensors (Basel, Switzerland), 2018-01, Vol.18 (2), p.361</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3</citedby><cites>FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3</cites><orcidid>0000-0002-6121-4200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2110105506/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2110105506?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29373544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qingzhu</creatorcontrib><creatorcontrib>Li, Zhining</creatorcontrib><creatorcontrib>Zhang, Yingtang</creatorcontrib><creatorcontrib>Yin, Gang</creatorcontrib><title>Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor's system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg-Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the "overcalibration" problem. The accuracy of the error parameters' estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust.</description><subject>artificial reference</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Coordinates</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>least-squares method</subject><subject>Linear equations</subject><subject>magnetic gradient tensor system</subject><subject>Misalignment</subject><subject>Parameter estimation</subject><subject>Root-mean-square errors</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Variation</subject><subject>vector calibration</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1vEzEQhi0EoqVw4A-glbjQQ2D8tWtfkKpQSqVWHCi9Wl7vOHW0sYvtIPXf45IStZxszTx69M4MIW8pfORcw6dCFTDgPX1GDqlgYqEYg-eP_gfkVSlrAMY5Vy_JAdN84FKIQ3J9kmvwwQU7d9foasrd0s5hzLaGFLtLrDdp6nwrfwneY8boQlx1l3YVsQbXnWU7BYy1u8JYGvXjrlTclNfkhbdzwTcP7xH5-fX0avltcfH97Hx5crFwotd1wSc5SOlbTkpbTHQ9R9k62rFe0ZFKKsBRPaDASSoBMCraq8FS4JRLZvkROd95p2TX5jaHjc13Jtlg_hZSXhnbBnQzmt5RdAMf_aBAAHKl9CjGYaJssp6Psrk-71y323GDk2tTZTs_kT7txHBjVum3kUpKyaEJPjwIcvq1xVLNJhSH82wjpm0xVGsGoAW7R9__h67TNse2KtNWARSkhL5RxzvK5VRKRr8PQ8HcX97sL9_Yd4_T78l_p-Z_AJVTpo8</recordid><startdate>20180126</startdate><enddate>20180126</enddate><creator>Li, Qingzhu</creator><creator>Li, Zhining</creator><creator>Zhang, Yingtang</creator><creator>Yin, Gang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6121-4200</orcidid></search><sort><creationdate>20180126</creationdate><title>Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems</title><author>Li, Qingzhu ; Li, Zhining ; Zhang, Yingtang ; Yin, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>artificial reference</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Coordinates</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>least-squares method</topic><topic>Linear equations</topic><topic>magnetic gradient tensor system</topic><topic>Misalignment</topic><topic>Parameter estimation</topic><topic>Root-mean-square errors</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Variation</topic><topic>vector calibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qingzhu</creatorcontrib><creatorcontrib>Li, Zhining</creatorcontrib><creatorcontrib>Zhang, Yingtang</creatorcontrib><creatorcontrib>Yin, Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qingzhu</au><au>Li, Zhining</au><au>Zhang, Yingtang</au><au>Yin, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2018-01-26</date><risdate>2018</risdate><volume>18</volume><issue>2</issue><spage>361</spage><pages>361-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor's system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg-Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the "overcalibration" problem. The accuracy of the error parameters' estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29373544</pmid><doi>10.3390/s18020361</doi><orcidid>https://orcid.org/0000-0002-6121-4200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2018-01, Vol.18 (2), p.361
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6c1ec73bf78040e3889b4b7d12daf3b5
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects artificial reference
Calibration
Computer simulation
Coordinates
Error analysis
Error detection
least-squares method
Linear equations
magnetic gradient tensor system
Misalignment
Parameter estimation
Root-mean-square errors
Sensor arrays
Sensors
Variation
vector calibration
title Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Vector%20Calibration%20Method%20for%20Differencing%20Magnetic%20Gradient%20Tensor%20Systems&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Li,%20Qingzhu&rft.date=2018-01-26&rft.volume=18&rft.issue=2&rft.spage=361&rft.pages=361-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s18020361&rft_dat=%3Cproquest_doaj_%3E1992009420%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2110105506&rft_id=info:pmid/29373544&rfr_iscdi=true