Loading…
Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems
The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2018-01, Vol.18 (2), p.361 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3 |
container_end_page | |
container_issue | 2 |
container_start_page | 361 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 18 |
creator | Li, Qingzhu Li, Zhining Zhang, Yingtang Yin, Gang |
description | The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor's system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg-Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the "overcalibration" problem. The accuracy of the error parameters' estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust. |
doi_str_mv | 10.3390/s18020361 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c1ec73bf78040e3889b4b7d12daf3b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c1ec73bf78040e3889b4b7d12daf3b5</doaj_id><sourcerecordid>1992009420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqVw4A-glbjQQ2D8tWtfkKpQSqVWHCi9Wl7vOHW0sYvtIPXf45IStZxszTx69M4MIW8pfORcw6dCFTDgPX1GDqlgYqEYg-eP_gfkVSlrAMY5Vy_JAdN84FKIQ3J9kmvwwQU7d9foasrd0s5hzLaGFLtLrDdp6nwrfwneY8boQlx1l3YVsQbXnWU7BYy1u8JYGvXjrlTclNfkhbdzwTcP7xH5-fX0avltcfH97Hx5crFwotd1wSc5SOlbTkpbTHQ9R9k62rFe0ZFKKsBRPaDASSoBMCraq8FS4JRLZvkROd95p2TX5jaHjc13Jtlg_hZSXhnbBnQzmt5RdAMf_aBAAHKl9CjGYaJssp6Psrk-71y323GDk2tTZTs_kT7txHBjVum3kUpKyaEJPjwIcvq1xVLNJhSH82wjpm0xVGsGoAW7R9__h67TNse2KtNWARSkhL5RxzvK5VRKRr8PQ8HcX97sL9_Yd4_T78l_p-Z_AJVTpo8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110105506</pqid></control><display><type>article</type><title>Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Li, Qingzhu ; Li, Zhining ; Zhang, Yingtang ; Yin, Gang</creator><creatorcontrib>Li, Qingzhu ; Li, Zhining ; Zhang, Yingtang ; Yin, Gang</creatorcontrib><description>The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor's system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg-Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the "overcalibration" problem. The accuracy of the error parameters' estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s18020361</identifier><identifier>PMID: 29373544</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>artificial reference ; Calibration ; Computer simulation ; Coordinates ; Error analysis ; Error detection ; least-squares method ; Linear equations ; magnetic gradient tensor system ; Misalignment ; Parameter estimation ; Root-mean-square errors ; Sensor arrays ; Sensors ; Variation ; vector calibration</subject><ispartof>Sensors (Basel, Switzerland), 2018-01, Vol.18 (2), p.361</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3</citedby><cites>FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3</cites><orcidid>0000-0002-6121-4200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2110105506/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2110105506?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29373544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qingzhu</creatorcontrib><creatorcontrib>Li, Zhining</creatorcontrib><creatorcontrib>Zhang, Yingtang</creatorcontrib><creatorcontrib>Yin, Gang</creatorcontrib><title>Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor's system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg-Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the "overcalibration" problem. The accuracy of the error parameters' estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust.</description><subject>artificial reference</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Coordinates</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>least-squares method</subject><subject>Linear equations</subject><subject>magnetic gradient tensor system</subject><subject>Misalignment</subject><subject>Parameter estimation</subject><subject>Root-mean-square errors</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Variation</subject><subject>vector calibration</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1vEzEQhi0EoqVw4A-glbjQQ2D8tWtfkKpQSqVWHCi9Wl7vOHW0sYvtIPXf45IStZxszTx69M4MIW8pfORcw6dCFTDgPX1GDqlgYqEYg-eP_gfkVSlrAMY5Vy_JAdN84FKIQ3J9kmvwwQU7d9foasrd0s5hzLaGFLtLrDdp6nwrfwneY8boQlx1l3YVsQbXnWU7BYy1u8JYGvXjrlTclNfkhbdzwTcP7xH5-fX0avltcfH97Hx5crFwotd1wSc5SOlbTkpbTHQ9R9k62rFe0ZFKKsBRPaDASSoBMCraq8FS4JRLZvkROd95p2TX5jaHjc13Jtlg_hZSXhnbBnQzmt5RdAMf_aBAAHKl9CjGYaJssp6Psrk-71y323GDk2tTZTs_kT7txHBjVum3kUpKyaEJPjwIcvq1xVLNJhSH82wjpm0xVGsGoAW7R9__h67TNse2KtNWARSkhL5RxzvK5VRKRr8PQ8HcX97sL9_Yd4_T78l_p-Z_AJVTpo8</recordid><startdate>20180126</startdate><enddate>20180126</enddate><creator>Li, Qingzhu</creator><creator>Li, Zhining</creator><creator>Zhang, Yingtang</creator><creator>Yin, Gang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6121-4200</orcidid></search><sort><creationdate>20180126</creationdate><title>Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems</title><author>Li, Qingzhu ; Li, Zhining ; Zhang, Yingtang ; Yin, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>artificial reference</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Coordinates</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>least-squares method</topic><topic>Linear equations</topic><topic>magnetic gradient tensor system</topic><topic>Misalignment</topic><topic>Parameter estimation</topic><topic>Root-mean-square errors</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Variation</topic><topic>vector calibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qingzhu</creatorcontrib><creatorcontrib>Li, Zhining</creatorcontrib><creatorcontrib>Zhang, Yingtang</creatorcontrib><creatorcontrib>Yin, Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qingzhu</au><au>Li, Zhining</au><au>Zhang, Yingtang</au><au>Yin, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2018-01-26</date><risdate>2018</risdate><volume>18</volume><issue>2</issue><spage>361</spage><pages>361-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor's system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg-Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the "overcalibration" problem. The accuracy of the error parameters' estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29373544</pmid><doi>10.3390/s18020361</doi><orcidid>https://orcid.org/0000-0002-6121-4200</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2018-01, Vol.18 (2), p.361 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6c1ec73bf78040e3889b4b7d12daf3b5 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | artificial reference Calibration Computer simulation Coordinates Error analysis Error detection least-squares method Linear equations magnetic gradient tensor system Misalignment Parameter estimation Root-mean-square errors Sensor arrays Sensors Variation vector calibration |
title | Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Vector%20Calibration%20Method%20for%20Differencing%20Magnetic%20Gradient%20Tensor%20Systems&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Li,%20Qingzhu&rft.date=2018-01-26&rft.volume=18&rft.issue=2&rft.spage=361&rft.pages=361-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s18020361&rft_dat=%3Cproquest_doaj_%3E1992009420%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-3d5755f14211220ec63e54699c2681b15140c197e4ed58400b81687a1031352a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2110105506&rft_id=info:pmid/29373544&rfr_iscdi=true |