Loading…

Comparison of HRV indices obtained from ECG and SCG signals from CEBS database

Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzin...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering online 2019-06, Vol.18 (1), p.69-69, Article 69
Main Authors: Siecinski, Szymon, Tkacz, Ewaryst J, Kostka, Pawel S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals. We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features. Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats ([Formula: see text], [Formula: see text]) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination ([Formula: see text]) to determine goodness of fit to linear model. The highest [Formula: see text] values were obtained for mean interbeat interval ([Formula: see text] for reference algorithm, [Formula: see text] in the worst case), [Formula: see text] and [Formula: see text] ([Formula: see text] for the best case, [Formula: see text] for the worst case) and the lowest were obtained for [Formula: see text] ([Formula: see text] in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the [Formula: see text] values of pNN50 values in signals p001-p020 and for all analyzed signals. Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and [Formula: see text]. Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.
ISSN:1475-925X
1475-925X
DOI:10.1186/s12938-019-0687-5