Loading…

Characterization and Source Identification of Elements and Water-Soluble Ions in Submicrometre Aerosols in Brno and Šlapanice (Czech Republic)

Submicrometre aerosol particles (particulate matter, PM1) were collected in two Czech cities (Brno and Šlapanice) during week campaigns in winter and summer of 2009 and 2010. The aerosols were analysed for 14 elements and 12 water-soluble ions using inductively coupled plasma–mass spectrometry and i...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2020-07, Vol.11 (7), p.688
Main Authors: Mikuška, Pavel, Vojtěšek, Martin, Křůmal, Kamil, Mikušková-Čampulová, Martina, Michálek, Jaroslav, Večeřa, Zbyněk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Submicrometre aerosol particles (particulate matter, PM1) were collected in two Czech cities (Brno and Šlapanice) during week campaigns in winter and summer of 2009 and 2010. The aerosols were analysed for 14 elements and 12 water-soluble ions using inductively coupled plasma–mass spectrometry and ion chromatography techniques. The average PM1 mass concentration was 14.4 and 20.4 µg m−3 in Brno and Šlapanice, respectively. Most of the analysed elements and ions exhibit distinct seasonal variability with higher concentrations in winter in comparison to summer. The determined elements and ions together accounted for about 29% of total PM1 mass, ranging between 16% and 44%. Ion species were the most abundant components in collected aerosols, accounting for 27.2% of mass of PM1 aerosols, and elements accounted for 1.8% of mass of PM1 aerosols. One-day backward trajectories were calculated using the Hysplit model to analyse air masses transported towards the sampling sites. The Pearson correlation coefficients between individual PM1 components and PM1 mass and air temperature were calculated. To identify the main aerosol sources, factor analysis was applied. Six factors were identified for each locality. The following sources of PM1 particles were identified in Brno: a municipal incinerator, vehicle exhausts, secondary sulphate, a cement factory, industry and biomass burning. The identified sources in Šlapanice were as follows: a combustion source, coal combustion, a cement factory, a municipal incinerator, vehicle exhausts and industry.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos11070688