Loading…

Impaired cerebrospinal fluid transport due to idiopathic subdural hematoma in pig: an unusual case

We report the effects of the presentation of an idiopathic subdural hematoma (SDH) in an adult domestic pig on the glymphatic system, a brain-wide solute clearance system. This accidental finding is based on our recently published study that described this system for the first time in large mammals....

Full description

Saved in:
Bibliographic Details
Published in:BMC veterinary research 2021-07, Vol.17 (1), p.250-250, Article 250
Main Authors: Shanbhag, Nagesh C, Bèchet, Nicholas Burdon, Kritsilis, Marios, Lundgaard, Iben
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the effects of the presentation of an idiopathic subdural hematoma (SDH) in an adult domestic pig on the glymphatic system, a brain-wide solute clearance system. This accidental finding is based on our recently published study that described this system for the first time in large mammals. Our current results define the need to investigate cerebrovascular pathologies that could compromise glymphatic function in gyrencephalic animal models as a tool to bridge rodent and human glymphatic studies. The pig underwent intracisternal infusion of a fluorescent tracer under general anesthesia to delineate cerebrospinal fluid (CSF) pathways, and was euthanized at the end of 3 h of tracer circulation. During brain isolation, a hematoma measuring approximately 15 × 35 mm in size beneath the dura was evident overlying fronto-parietal brain surface. Interestingly, CSF tracer distribution was markedly reduced on dorsal, lateral and ventral surfaces of the brain when compared with a control pig that was infused with the same tracer. Furthermore, regional distribution of tracer along the interhemispheric fissure, lateral fissure and hippocampus was 4-5-fold reduced in comparison with a control pig. Microscopically, glial-fibrillary acidic protein and aquaporin-4 water channel immunoreactivities were altered in the SDH pig brain. This is the first case of impaired glymphatic pathway due to an idiopathic SDH in a pig. Potential etiology could involve an acceleration-deceleration injury inflicted prior to arrival at our housing facility (e.g., during animal transportation) leading to disruption of bridging veins along the superior sagittal sinus and impairing CSF pathways in the whole brain. This accidental finding of globally impaired glymphatic function sheds light on a novel consequence of SDH, which may play a role in the enhanced cognitive decline seen in elderly presenting with chronic SDH.
ISSN:1746-6148
1746-6148
DOI:10.1186/s12917-021-02954-2