Loading…
A novel strategy to characterize the pattern of β-lactam antibiotic-induced drug resistance in Acinetobacter baumannii
Carbapenem-resistant Acinetobacter baumannii (CRAb) is an urgent public health threat, according to the CDC. This pathogen has few treatment options and causes severe nosocomial infections with > 50% fatality rate. Although previous studies have examined the proteome of CRAb, there have been no f...
Saved in:
Published in: | Scientific reports 2023-06, Vol.13 (1), p.9177-9177, Article 9177 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbapenem-resistant
Acinetobacter baumannii
(CRAb) is an urgent public health threat, according to the CDC. This pathogen has few treatment options and causes severe nosocomial infections with > 50% fatality rate. Although previous studies have examined the proteome of CRAb, there have been no focused analyses of dynamic changes to β-lactamase expression that may occur due to drug exposure. Here, we present our initial proteomic study of variation in β-lactamase expression that occurs in CRAb with different β-lactam antibiotics. Briefly, drug resistance to Ab (ATCC 19606) was induced by the administration of various classes of β-lactam antibiotics, and the cell-free supernatant was isolated, concentrated, separated by SDS-PAGE, digested with trypsin, and identified by label-free LC–MS-based quantitative proteomics. Thirteen proteins were identified and evaluated using a 1789 sequence database of Ab β-lactamases from UniProt, the majority of which were Class C β-lactamases (≥ 80%). Importantly, different antibiotics, even those of the same class (e.g. penicillin and amoxicillin), induced non-equivalent responses comprising various isoforms of Class C and D serine-β-lactamases, resulting in unique resistomes. These results open the door to a new approach of analyzing and studying the problem of multi-drug resistance in bacteria that rely strongly on β-lactamase expression. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-36475-9 |