Loading…

Propagation of periodic director and flow patterns in a cholesteric liquid crystal under electroconvection

The electroconvection of liquid crystals is a typical example of a dissipative structure generated by complicated interactions between three factors: convective flow, structural deformation, and the migration of charge carriers. In this study, we found that the periodic structural deformation of a c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-10, Vol.14 (1), p.23201-18, Article 23201
Main Authors: Yoshioka, Jun, Nobori, Hiroki, Fukao, Koji, Araoka, Fumito
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electroconvection of liquid crystals is a typical example of a dissipative structure generated by complicated interactions between three factors: convective flow, structural deformation, and the migration of charge carriers. In this study, we found that the periodic structural deformation of a cholesteric liquid crystal propagates in space, like a wave, under an alternating-current electric field. The existence of convection and charge carriers was confirmed by flow-field measurements and dielectric relaxation spectroscopy. Given that the wave phenomenon results from electroconvection, we suggest a possible model for describing the mechanism of wave generation. The validity of the model was examined using the Onsager variational principle. Consequently, it was suggested that wave generation can be described by four effects: the electrostatic potential, mixing entropy, anisotropic friction due to charge migration, and viscous dissipation of the liquid crystal.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-74551-w