Loading…
Proportional intracranial volume correction differentially biases behavioral predictions across neuroanatomical features, sexes, and development
Individual differences in brain anatomy can be used to predict variations in cognitive ability. Most studies to date have focused on broad population-level trends, but the extent to which the observed predictive features are shared across sexes and age groups remains to be established. While it is s...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2022-10, Vol.260, p.119485-119485, Article 119485 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Individual differences in brain anatomy can be used to predict variations in cognitive ability. Most studies to date have focused on broad population-level trends, but the extent to which the observed predictive features are shared across sexes and age groups remains to be established. While it is standard practice to account for intracranial volume (ICV) using proportion correction in both regional and whole-brain morphometric analyses, in the context of brain-behavior predictions the possible differential impact of ICV correction on anatomical features and subgroups within the population has yet to be systematically investigated. In this work, we evaluate the effect of proportional ICV correction on sex-independent and sex-specific predictive models of individual cognitive abilities across multiple anatomical properties (surface area, gray matter volume, and cortical thickness) in healthy young adults (Human Connectome Project; n = 1013, 548 females) and typically developing children (Adolescent Brain Cognitive Development study; n = 1823, 979 females). We demonstrate that ICV correction generally reduces predictive accuracies derived from surface area and gray matter volume, while increasing predictive accuracies based on cortical thickness in both adults and children. Furthermore, the extent to which predictive models generalize across sexes and age groups depends on ICV correction: models based on surface area and gray matter volume are more generalizable without ICV correction, while models based on cortical thickness are more generalizable with ICV correction. Finally, the observed neuroanatomical features predictive of cognitive abilities are unique across age groups regardless of ICV correction, but whether they are shared or unique across sexes (within age groups) depends on ICV correction. These findings highlight the importance of considering individual differences in ICV, and show that proportional ICV correction does not remove the effects of cranial volume from anatomical measurements and can introduce ICV bias where previously there was none. ICV correction choices affect not just the strength of the relationships captured, but also the conclusions drawn regarding the neuroanatomical features that underlie those relationships. |
---|---|
ISSN: | 1053-8119 1095-9572 1095-9572 |
DOI: | 10.1016/j.neuroimage.2022.119485 |