Loading…

Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail

In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogene...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-05, Vol.11 (6), p.1370
Main Authors: Shigeta, Masaya, Hirayama, Yusuke, Ghedini, Emanuele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43
cites cdi_FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43
container_end_page
container_issue 6
container_start_page 1370
container_title Nanomaterials (Basel, Switzerland)
container_volume 11
creator Shigeta, Masaya
Hirayama, Yusuke
Ghedini, Emanuele
description In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics.
doi_str_mv 10.3390/nano11061370
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c6168a0b2954de1be1828227260b8c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c6168a0b2954de1be1828227260b8c1</doaj_id><sourcerecordid>2544918205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43</originalsourceid><addsrcrecordid>eNpdkktvEzEUhUcIRKvSHT_AEhsWBPwax94gobSUShUUpawtj30ncTRjB9sDKnv-Nx4SoRZv_Drnu8fybZqXBL9lTOF3wYRICBaELfGT5pTipVpwpcjTB-uT5jznHa5DESZb9rw5YRwLToU6bX6v4rifiik-BjOgdZncPYo9-jpBsFsfNuiy78GWjGJAVyn-LFt0m6KFnCEjExxa-1-ALnwuyXfTjMmzf-0Hb6vlcw24N6l4O8z6ggy620Iaa63bweSxbo0fXjTPejNkOD_OZ823j5d3q0-Lmy9X16sPNwvbUlIWsiOWGL6kwikMRDhule3q26W0VgBzkhrJiGNCWlCCiN51sncYrJQt7Tk7a64PXBfNTu-TH02619F4_fcgpo0-ZtXCVr80uKOq5Q5IB0RSSWktjjtpSWW9P7D2UzeCsxBKMsMj6OOb4Ld6E3_oCuEMiwp4fQSk-H2CXPTos4VhMAHilDVtmeASE66q9NV_0l2cUv2wWcW5qtFwW1VvDiqbYs4J-n9hCNZzu-iH7cL-ANDNso0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544918205</pqid></control><display><type>article</type><title>Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Shigeta, Masaya ; Hirayama, Yusuke ; Ghedini, Emanuele</creator><creatorcontrib>Shigeta, Masaya ; Hirayama, Yusuke ; Ghedini, Emanuele</creatorcontrib><description>In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11061370</identifier><identifier>PMID: 34064269</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Atmospheric pressure ; Atoms &amp; subatomic particles ; Coagulation ; Computer applications ; Cooling rate ; Fabrication ; growth ; Melting point ; Melting points ; multiscale modeling and simulation ; Nanoparticles ; Nucleation ; Numerical analysis ; Particle size ; Plasma ; Quenching ; Scanning electron microscopy ; Silicon ; Size distribution ; Thermal plasmas ; Vapors</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-05, Vol.11 (6), p.1370</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43</citedby><cites>FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43</cites><orcidid>0000-0002-5155-1254 ; 0000-0001-9320-1351 ; 0000-0003-3805-8761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544918205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544918205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Shigeta, Masaya</creatorcontrib><creatorcontrib>Hirayama, Yusuke</creatorcontrib><creatorcontrib>Ghedini, Emanuele</creatorcontrib><title>Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail</title><title>Nanomaterials (Basel, Switzerland)</title><description>In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics.</description><subject>Aerosols</subject><subject>Atmospheric pressure</subject><subject>Atoms &amp; subatomic particles</subject><subject>Coagulation</subject><subject>Computer applications</subject><subject>Cooling rate</subject><subject>Fabrication</subject><subject>growth</subject><subject>Melting point</subject><subject>Melting points</subject><subject>multiscale modeling and simulation</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Numerical analysis</subject><subject>Particle size</subject><subject>Plasma</subject><subject>Quenching</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Size distribution</subject><subject>Thermal plasmas</subject><subject>Vapors</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEUhUcIRKvSHT_AEhsWBPwax94gobSUShUUpawtj30ncTRjB9sDKnv-Nx4SoRZv_Drnu8fybZqXBL9lTOF3wYRICBaELfGT5pTipVpwpcjTB-uT5jznHa5DESZb9rw5YRwLToU6bX6v4rifiik-BjOgdZncPYo9-jpBsFsfNuiy78GWjGJAVyn-LFt0m6KFnCEjExxa-1-ALnwuyXfTjMmzf-0Hb6vlcw24N6l4O8z6ggy620Iaa63bweSxbo0fXjTPejNkOD_OZ823j5d3q0-Lmy9X16sPNwvbUlIWsiOWGL6kwikMRDhule3q26W0VgBzkhrJiGNCWlCCiN51sncYrJQt7Tk7a64PXBfNTu-TH02619F4_fcgpo0-ZtXCVr80uKOq5Q5IB0RSSWktjjtpSWW9P7D2UzeCsxBKMsMj6OOb4Ld6E3_oCuEMiwp4fQSk-H2CXPTos4VhMAHilDVtmeASE66q9NV_0l2cUv2wWcW5qtFwW1VvDiqbYs4J-n9hCNZzu-iH7cL-ANDNso0</recordid><startdate>20210521</startdate><enddate>20210521</enddate><creator>Shigeta, Masaya</creator><creator>Hirayama, Yusuke</creator><creator>Ghedini, Emanuele</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5155-1254</orcidid><orcidid>https://orcid.org/0000-0001-9320-1351</orcidid><orcidid>https://orcid.org/0000-0003-3805-8761</orcidid></search><sort><creationdate>20210521</creationdate><title>Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail</title><author>Shigeta, Masaya ; Hirayama, Yusuke ; Ghedini, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Atmospheric pressure</topic><topic>Atoms &amp; subatomic particles</topic><topic>Coagulation</topic><topic>Computer applications</topic><topic>Cooling rate</topic><topic>Fabrication</topic><topic>growth</topic><topic>Melting point</topic><topic>Melting points</topic><topic>multiscale modeling and simulation</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Numerical analysis</topic><topic>Particle size</topic><topic>Plasma</topic><topic>Quenching</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Size distribution</topic><topic>Thermal plasmas</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shigeta, Masaya</creatorcontrib><creatorcontrib>Hirayama, Yusuke</creatorcontrib><creatorcontrib>Ghedini, Emanuele</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shigeta, Masaya</au><au>Hirayama, Yusuke</au><au>Ghedini, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2021-05-21</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>1370</spage><pages>1370-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34064269</pmid><doi>10.3390/nano11061370</doi><orcidid>https://orcid.org/0000-0002-5155-1254</orcidid><orcidid>https://orcid.org/0000-0001-9320-1351</orcidid><orcidid>https://orcid.org/0000-0003-3805-8761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2021-05, Vol.11 (6), p.1370
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6c6168a0b2954de1be1828227260b8c1
source PubMed (Medline); Publicly Available Content Database
subjects Aerosols
Atmospheric pressure
Atoms & subatomic particles
Coagulation
Computer applications
Cooling rate
Fabrication
growth
Melting point
Melting points
multiscale modeling and simulation
Nanoparticles
Nucleation
Numerical analysis
Particle size
Plasma
Quenching
Scanning electron microscopy
Silicon
Size distribution
Thermal plasmas
Vapors
title Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Study%20of%20Quenching%20Effects%20on%20Growth%20Processes%20and%20Size%20Distributions%20of%20Silicon%20Nanoparticles%20at%20a%20Thermal%20Plasma%20Tail&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Shigeta,%20Masaya&rft.date=2021-05-21&rft.volume=11&rft.issue=6&rft.spage=1370&rft.pages=1370-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11061370&rft_dat=%3Cproquest_doaj_%3E2544918205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544918205&rft_id=info:pmid/34064269&rfr_iscdi=true