Loading…
Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail
In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogene...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-05, Vol.11 (6), p.1370 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43 |
container_end_page | |
container_issue | 6 |
container_start_page | 1370 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 11 |
creator | Shigeta, Masaya Hirayama, Yusuke Ghedini, Emanuele |
description | In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics. |
doi_str_mv | 10.3390/nano11061370 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c6168a0b2954de1be1828227260b8c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c6168a0b2954de1be1828227260b8c1</doaj_id><sourcerecordid>2544918205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43</originalsourceid><addsrcrecordid>eNpdkktvEzEUhUcIRKvSHT_AEhsWBPwax94gobSUShUUpawtj30ncTRjB9sDKnv-Nx4SoRZv_Drnu8fybZqXBL9lTOF3wYRICBaELfGT5pTipVpwpcjTB-uT5jznHa5DESZb9rw5YRwLToU6bX6v4rifiik-BjOgdZncPYo9-jpBsFsfNuiy78GWjGJAVyn-LFt0m6KFnCEjExxa-1-ALnwuyXfTjMmzf-0Hb6vlcw24N6l4O8z6ggy620Iaa63bweSxbo0fXjTPejNkOD_OZ823j5d3q0-Lmy9X16sPNwvbUlIWsiOWGL6kwikMRDhule3q26W0VgBzkhrJiGNCWlCCiN51sncYrJQt7Tk7a64PXBfNTu-TH02619F4_fcgpo0-ZtXCVr80uKOq5Q5IB0RSSWktjjtpSWW9P7D2UzeCsxBKMsMj6OOb4Ld6E3_oCuEMiwp4fQSk-H2CXPTos4VhMAHilDVtmeASE66q9NV_0l2cUv2wWcW5qtFwW1VvDiqbYs4J-n9hCNZzu-iH7cL-ANDNso0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544918205</pqid></control><display><type>article</type><title>Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Shigeta, Masaya ; Hirayama, Yusuke ; Ghedini, Emanuele</creator><creatorcontrib>Shigeta, Masaya ; Hirayama, Yusuke ; Ghedini, Emanuele</creatorcontrib><description>In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11061370</identifier><identifier>PMID: 34064269</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Atmospheric pressure ; Atoms & subatomic particles ; Coagulation ; Computer applications ; Cooling rate ; Fabrication ; growth ; Melting point ; Melting points ; multiscale modeling and simulation ; Nanoparticles ; Nucleation ; Numerical analysis ; Particle size ; Plasma ; Quenching ; Scanning electron microscopy ; Silicon ; Size distribution ; Thermal plasmas ; Vapors</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-05, Vol.11 (6), p.1370</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43</citedby><cites>FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43</cites><orcidid>0000-0002-5155-1254 ; 0000-0001-9320-1351 ; 0000-0003-3805-8761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544918205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544918205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Shigeta, Masaya</creatorcontrib><creatorcontrib>Hirayama, Yusuke</creatorcontrib><creatorcontrib>Ghedini, Emanuele</creatorcontrib><title>Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail</title><title>Nanomaterials (Basel, Switzerland)</title><description>In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics.</description><subject>Aerosols</subject><subject>Atmospheric pressure</subject><subject>Atoms & subatomic particles</subject><subject>Coagulation</subject><subject>Computer applications</subject><subject>Cooling rate</subject><subject>Fabrication</subject><subject>growth</subject><subject>Melting point</subject><subject>Melting points</subject><subject>multiscale modeling and simulation</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Numerical analysis</subject><subject>Particle size</subject><subject>Plasma</subject><subject>Quenching</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Size distribution</subject><subject>Thermal plasmas</subject><subject>Vapors</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEUhUcIRKvSHT_AEhsWBPwax94gobSUShUUpawtj30ncTRjB9sDKnv-Nx4SoRZv_Drnu8fybZqXBL9lTOF3wYRICBaELfGT5pTipVpwpcjTB-uT5jznHa5DESZb9rw5YRwLToU6bX6v4rifiik-BjOgdZncPYo9-jpBsFsfNuiy78GWjGJAVyn-LFt0m6KFnCEjExxa-1-ALnwuyXfTjMmzf-0Hb6vlcw24N6l4O8z6ggy620Iaa63bweSxbo0fXjTPejNkOD_OZ823j5d3q0-Lmy9X16sPNwvbUlIWsiOWGL6kwikMRDhule3q26W0VgBzkhrJiGNCWlCCiN51sncYrJQt7Tk7a64PXBfNTu-TH02619F4_fcgpo0-ZtXCVr80uKOq5Q5IB0RSSWktjjtpSWW9P7D2UzeCsxBKMsMj6OOb4Ld6E3_oCuEMiwp4fQSk-H2CXPTos4VhMAHilDVtmeASE66q9NV_0l2cUv2wWcW5qtFwW1VvDiqbYs4J-n9hCNZzu-iH7cL-ANDNso0</recordid><startdate>20210521</startdate><enddate>20210521</enddate><creator>Shigeta, Masaya</creator><creator>Hirayama, Yusuke</creator><creator>Ghedini, Emanuele</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5155-1254</orcidid><orcidid>https://orcid.org/0000-0001-9320-1351</orcidid><orcidid>https://orcid.org/0000-0003-3805-8761</orcidid></search><sort><creationdate>20210521</creationdate><title>Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail</title><author>Shigeta, Masaya ; Hirayama, Yusuke ; Ghedini, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Atmospheric pressure</topic><topic>Atoms & subatomic particles</topic><topic>Coagulation</topic><topic>Computer applications</topic><topic>Cooling rate</topic><topic>Fabrication</topic><topic>growth</topic><topic>Melting point</topic><topic>Melting points</topic><topic>multiscale modeling and simulation</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Numerical analysis</topic><topic>Particle size</topic><topic>Plasma</topic><topic>Quenching</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Size distribution</topic><topic>Thermal plasmas</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shigeta, Masaya</creatorcontrib><creatorcontrib>Hirayama, Yusuke</creatorcontrib><creatorcontrib>Ghedini, Emanuele</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shigeta, Masaya</au><au>Hirayama, Yusuke</au><au>Ghedini, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2021-05-21</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>1370</spage><pages>1370-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this paper, quenching effects on silicon nanoparticle growth processes and size distributions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We used a nodal-type model that expresses a size distribution evolving temporally with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point depression. The numerically obtained size distributions exhibit similar size ranges and tendencies to those of experiment results obtained with and without quenching. In a highly supersaturated state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are consumed, the nanoparticles grow by coagulation, which occurs much more slowly than condensation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations for controlling nanoparticle characteristics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34064269</pmid><doi>10.3390/nano11061370</doi><orcidid>https://orcid.org/0000-0002-5155-1254</orcidid><orcidid>https://orcid.org/0000-0001-9320-1351</orcidid><orcidid>https://orcid.org/0000-0003-3805-8761</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2021-05, Vol.11 (6), p.1370 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6c6168a0b2954de1be1828227260b8c1 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Aerosols Atmospheric pressure Atoms & subatomic particles Coagulation Computer applications Cooling rate Fabrication growth Melting point Melting points multiscale modeling and simulation Nanoparticles Nucleation Numerical analysis Particle size Plasma Quenching Scanning electron microscopy Silicon Size distribution Thermal plasmas Vapors |
title | Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Study%20of%20Quenching%20Effects%20on%20Growth%20Processes%20and%20Size%20Distributions%20of%20Silicon%20Nanoparticles%20at%20a%20Thermal%20Plasma%20Tail&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Shigeta,%20Masaya&rft.date=2021-05-21&rft.volume=11&rft.issue=6&rft.spage=1370&rft.pages=1370-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11061370&rft_dat=%3Cproquest_doaj_%3E2544918205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-8b1c1a4726d90e16d4c9cb13788cc6e3d82a831d368ce9616fdb8fd0ec8852f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544918205&rft_id=info:pmid/34064269&rfr_iscdi=true |