Loading…
A CSI-Based Human Activity Recognition Using Deep Learning
The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cos...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-10, Vol.21 (21), p.7225 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3 |
container_end_page | |
container_issue | 21 |
container_start_page | 7225 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Fard Moshiri, Parisa Shahbazian, Reza Nabati, Mohammad Ghorashi, Seyed Ali |
description | The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics of WiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities. |
doi_str_mv | 10.3390/s21217225 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c7a4b49c07e48fc96f6e35592b85b54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c7a4b49c07e48fc96f6e35592b85b54</doaj_id><sourcerecordid>2596070263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq2qqEDoof9gpV7aw4Lt8ceaQ6U05SNSJCQoZ8v2elNHGzu1d5H4910ahICTx55Hz7zyIPSF4FMAhc8KJZRISvkHdEQYZXVDKf74qj5Ex6VsMKYA0HxCh8CkxBzoETqfV4u7Zf3TFN9W1-PWxGruhvAQhsfq1ru0jmEIKVb3JcR19cv7XbXyJsfpdoIOOtMX__n5nKH7y4vfi-t6dXO1XMxXteNEDHXbUQsYEyJaYgk3nipmoeO0Y0oI2jJHrOQtTOEsGCmVNV5A4ziDrgVlYYaWe2-bzEbvctia_KiTCfr_Q8prbfIQXO-1cNIwy5TD0rOmc0p0wgPnitqG28k4Qz_2rt1ot751Pg7Z9G-kbzsx_NHr9KAb3kjF-ST49izI6e_oy6C3oTjf9yb6NBZNuZKsYdPECf36Dt2kMcfpq54ogSWmAibq-55yOZWSffcShmD9tF39sl34B_7tko4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596070263</pqid></control><display><type>article</type><title>A CSI-Based Human Activity Recognition Using Deep Learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>NCBI_PubMed Central(免费)</source><creator>Fard Moshiri, Parisa ; Shahbazian, Reza ; Nabati, Mohammad ; Ghorashi, Seyed Ali</creator><creatorcontrib>Fard Moshiri, Parisa ; Shahbazian, Reza ; Nabati, Mohammad ; Ghorashi, Seyed Ali</creatorcontrib><description>The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics of WiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21217225</identifier><identifier>PMID: 34770532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>activity recognition ; Algorithms ; channel state information ; Datasets ; Deep learning ; Human activity recognition ; Internet of Things ; Methods ; Moving object recognition ; Neural networks ; Older people ; Privacy ; Sensors ; smart house ; Smart houses ; Software ; Wireless access points ; Wireless networks</subject><ispartof>Sensors (Basel, Switzerland), 2021-10, Vol.21 (21), p.7225</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3</citedby><cites>FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3</cites><orcidid>0000-0002-2910-9208 ; 0000-0002-2313-6002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596070263/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596070263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Fard Moshiri, Parisa</creatorcontrib><creatorcontrib>Shahbazian, Reza</creatorcontrib><creatorcontrib>Nabati, Mohammad</creatorcontrib><creatorcontrib>Ghorashi, Seyed Ali</creatorcontrib><title>A CSI-Based Human Activity Recognition Using Deep Learning</title><title>Sensors (Basel, Switzerland)</title><description>The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics of WiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.</description><subject>activity recognition</subject><subject>Algorithms</subject><subject>channel state information</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Human activity recognition</subject><subject>Internet of Things</subject><subject>Methods</subject><subject>Moving object recognition</subject><subject>Neural networks</subject><subject>Older people</subject><subject>Privacy</subject><subject>Sensors</subject><subject>smart house</subject><subject>Smart houses</subject><subject>Software</subject><subject>Wireless access points</subject><subject>Wireless networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1PGzEQhq2qqEDoof9gpV7aw4Lt8ceaQ6U05SNSJCQoZ8v2elNHGzu1d5H4910ahICTx55Hz7zyIPSF4FMAhc8KJZRISvkHdEQYZXVDKf74qj5Ex6VsMKYA0HxCh8CkxBzoETqfV4u7Zf3TFN9W1-PWxGruhvAQhsfq1ru0jmEIKVb3JcR19cv7XbXyJsfpdoIOOtMX__n5nKH7y4vfi-t6dXO1XMxXteNEDHXbUQsYEyJaYgk3nipmoeO0Y0oI2jJHrOQtTOEsGCmVNV5A4ziDrgVlYYaWe2-bzEbvctia_KiTCfr_Q8prbfIQXO-1cNIwy5TD0rOmc0p0wgPnitqG28k4Qz_2rt1ot751Pg7Z9G-kbzsx_NHr9KAb3kjF-ST49izI6e_oy6C3oTjf9yb6NBZNuZKsYdPECf36Dt2kMcfpq54ogSWmAibq-55yOZWSffcShmD9tF39sl34B_7tko4</recordid><startdate>20211030</startdate><enddate>20211030</enddate><creator>Fard Moshiri, Parisa</creator><creator>Shahbazian, Reza</creator><creator>Nabati, Mohammad</creator><creator>Ghorashi, Seyed Ali</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2910-9208</orcidid><orcidid>https://orcid.org/0000-0002-2313-6002</orcidid></search><sort><creationdate>20211030</creationdate><title>A CSI-Based Human Activity Recognition Using Deep Learning</title><author>Fard Moshiri, Parisa ; Shahbazian, Reza ; Nabati, Mohammad ; Ghorashi, Seyed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>activity recognition</topic><topic>Algorithms</topic><topic>channel state information</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Human activity recognition</topic><topic>Internet of Things</topic><topic>Methods</topic><topic>Moving object recognition</topic><topic>Neural networks</topic><topic>Older people</topic><topic>Privacy</topic><topic>Sensors</topic><topic>smart house</topic><topic>Smart houses</topic><topic>Software</topic><topic>Wireless access points</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fard Moshiri, Parisa</creatorcontrib><creatorcontrib>Shahbazian, Reza</creatorcontrib><creatorcontrib>Nabati, Mohammad</creatorcontrib><creatorcontrib>Ghorashi, Seyed Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fard Moshiri, Parisa</au><au>Shahbazian, Reza</au><au>Nabati, Mohammad</au><au>Ghorashi, Seyed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CSI-Based Human Activity Recognition Using Deep Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-10-30</date><risdate>2021</risdate><volume>21</volume><issue>21</issue><spage>7225</spage><pages>7225-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics of WiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34770532</pmid><doi>10.3390/s21217225</doi><orcidid>https://orcid.org/0000-0002-2910-9208</orcidid><orcidid>https://orcid.org/0000-0002-2313-6002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-10, Vol.21 (21), p.7225 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6c7a4b49c07e48fc96f6e35592b85b54 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); NCBI_PubMed Central(免费) |
subjects | activity recognition Algorithms channel state information Datasets Deep learning Human activity recognition Internet of Things Methods Moving object recognition Neural networks Older people Privacy Sensors smart house Smart houses Software Wireless access points Wireless networks |
title | A CSI-Based Human Activity Recognition Using Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CSI-Based%20Human%20Activity%20Recognition%20Using%20Deep%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Fard%20Moshiri,%20Parisa&rft.date=2021-10-30&rft.volume=21&rft.issue=21&rft.spage=7225&rft.pages=7225-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21217225&rft_dat=%3Cproquest_doaj_%3E2596070263%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596070263&rft_id=info:pmid/34770532&rfr_iscdi=true |