Loading…

A CSI-Based Human Activity Recognition Using Deep Learning

The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cos...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-10, Vol.21 (21), p.7225
Main Authors: Fard Moshiri, Parisa, Shahbazian, Reza, Nabati, Mohammad, Ghorashi, Seyed Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3
cites cdi_FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3
container_end_page
container_issue 21
container_start_page 7225
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Fard Moshiri, Parisa
Shahbazian, Reza
Nabati, Mohammad
Ghorashi, Seyed Ali
description The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics of WiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.
doi_str_mv 10.3390/s21217225
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c7a4b49c07e48fc96f6e35592b85b54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c7a4b49c07e48fc96f6e35592b85b54</doaj_id><sourcerecordid>2596070263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq2qqEDoof9gpV7aw4Lt8ceaQ6U05SNSJCQoZ8v2elNHGzu1d5H4910ahICTx55Hz7zyIPSF4FMAhc8KJZRISvkHdEQYZXVDKf74qj5Ex6VsMKYA0HxCh8CkxBzoETqfV4u7Zf3TFN9W1-PWxGruhvAQhsfq1ru0jmEIKVb3JcR19cv7XbXyJsfpdoIOOtMX__n5nKH7y4vfi-t6dXO1XMxXteNEDHXbUQsYEyJaYgk3nipmoeO0Y0oI2jJHrOQtTOEsGCmVNV5A4ziDrgVlYYaWe2-bzEbvctia_KiTCfr_Q8prbfIQXO-1cNIwy5TD0rOmc0p0wgPnitqG28k4Qz_2rt1ot751Pg7Z9G-kbzsx_NHr9KAb3kjF-ST49izI6e_oy6C3oTjf9yb6NBZNuZKsYdPECf36Dt2kMcfpq54ogSWmAibq-55yOZWSffcShmD9tF39sl34B_7tko4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596070263</pqid></control><display><type>article</type><title>A CSI-Based Human Activity Recognition Using Deep Learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>NCBI_PubMed Central(免费)</source><creator>Fard Moshiri, Parisa ; Shahbazian, Reza ; Nabati, Mohammad ; Ghorashi, Seyed Ali</creator><creatorcontrib>Fard Moshiri, Parisa ; Shahbazian, Reza ; Nabati, Mohammad ; Ghorashi, Seyed Ali</creatorcontrib><description>The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics of WiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21217225</identifier><identifier>PMID: 34770532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>activity recognition ; Algorithms ; channel state information ; Datasets ; Deep learning ; Human activity recognition ; Internet of Things ; Methods ; Moving object recognition ; Neural networks ; Older people ; Privacy ; Sensors ; smart house ; Smart houses ; Software ; Wireless access points ; Wireless networks</subject><ispartof>Sensors (Basel, Switzerland), 2021-10, Vol.21 (21), p.7225</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3</citedby><cites>FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3</cites><orcidid>0000-0002-2910-9208 ; 0000-0002-2313-6002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596070263/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596070263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Fard Moshiri, Parisa</creatorcontrib><creatorcontrib>Shahbazian, Reza</creatorcontrib><creatorcontrib>Nabati, Mohammad</creatorcontrib><creatorcontrib>Ghorashi, Seyed Ali</creatorcontrib><title>A CSI-Based Human Activity Recognition Using Deep Learning</title><title>Sensors (Basel, Switzerland)</title><description>The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics of WiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.</description><subject>activity recognition</subject><subject>Algorithms</subject><subject>channel state information</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Human activity recognition</subject><subject>Internet of Things</subject><subject>Methods</subject><subject>Moving object recognition</subject><subject>Neural networks</subject><subject>Older people</subject><subject>Privacy</subject><subject>Sensors</subject><subject>smart house</subject><subject>Smart houses</subject><subject>Software</subject><subject>Wireless access points</subject><subject>Wireless networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1PGzEQhq2qqEDoof9gpV7aw4Lt8ceaQ6U05SNSJCQoZ8v2elNHGzu1d5H4910ahICTx55Hz7zyIPSF4FMAhc8KJZRISvkHdEQYZXVDKf74qj5Ex6VsMKYA0HxCh8CkxBzoETqfV4u7Zf3TFN9W1-PWxGruhvAQhsfq1ru0jmEIKVb3JcR19cv7XbXyJsfpdoIOOtMX__n5nKH7y4vfi-t6dXO1XMxXteNEDHXbUQsYEyJaYgk3nipmoeO0Y0oI2jJHrOQtTOEsGCmVNV5A4ziDrgVlYYaWe2-bzEbvctia_KiTCfr_Q8prbfIQXO-1cNIwy5TD0rOmc0p0wgPnitqG28k4Qz_2rt1ot751Pg7Z9G-kbzsx_NHr9KAb3kjF-ST49izI6e_oy6C3oTjf9yb6NBZNuZKsYdPECf36Dt2kMcfpq54ogSWmAibq-55yOZWSffcShmD9tF39sl34B_7tko4</recordid><startdate>20211030</startdate><enddate>20211030</enddate><creator>Fard Moshiri, Parisa</creator><creator>Shahbazian, Reza</creator><creator>Nabati, Mohammad</creator><creator>Ghorashi, Seyed Ali</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2910-9208</orcidid><orcidid>https://orcid.org/0000-0002-2313-6002</orcidid></search><sort><creationdate>20211030</creationdate><title>A CSI-Based Human Activity Recognition Using Deep Learning</title><author>Fard Moshiri, Parisa ; Shahbazian, Reza ; Nabati, Mohammad ; Ghorashi, Seyed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>activity recognition</topic><topic>Algorithms</topic><topic>channel state information</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Human activity recognition</topic><topic>Internet of Things</topic><topic>Methods</topic><topic>Moving object recognition</topic><topic>Neural networks</topic><topic>Older people</topic><topic>Privacy</topic><topic>Sensors</topic><topic>smart house</topic><topic>Smart houses</topic><topic>Software</topic><topic>Wireless access points</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fard Moshiri, Parisa</creatorcontrib><creatorcontrib>Shahbazian, Reza</creatorcontrib><creatorcontrib>Nabati, Mohammad</creatorcontrib><creatorcontrib>Ghorashi, Seyed Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fard Moshiri, Parisa</au><au>Shahbazian, Reza</au><au>Nabati, Mohammad</au><au>Ghorashi, Seyed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CSI-Based Human Activity Recognition Using Deep Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-10-30</date><risdate>2021</risdate><volume>21</volume><issue>21</issue><spage>7225</spage><pages>7225-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics of WiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34770532</pmid><doi>10.3390/s21217225</doi><orcidid>https://orcid.org/0000-0002-2910-9208</orcidid><orcidid>https://orcid.org/0000-0002-2313-6002</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-10, Vol.21 (21), p.7225
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6c7a4b49c07e48fc96f6e35592b85b54
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); NCBI_PubMed Central(免费)
subjects activity recognition
Algorithms
channel state information
Datasets
Deep learning
Human activity recognition
Internet of Things
Methods
Moving object recognition
Neural networks
Older people
Privacy
Sensors
smart house
Smart houses
Software
Wireless access points
Wireless networks
title A CSI-Based Human Activity Recognition Using Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CSI-Based%20Human%20Activity%20Recognition%20Using%20Deep%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Fard%20Moshiri,%20Parisa&rft.date=2021-10-30&rft.volume=21&rft.issue=21&rft.spage=7225&rft.pages=7225-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21217225&rft_dat=%3Cproquest_doaj_%3E2596070263%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-df2b300116d1b15ae294b3f52f49662d4c1b75d3023b3a779bae638c543fd39b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596070263&rft_id=info:pmid/34770532&rfr_iscdi=true