Loading…
Platelet‐Like Fusogenic Liposome‐Mediated Targeting Delivery of miR‐21 Improves Myocardial Remodeling by Reprogramming Macrophages Post Myocardial Ischemia‐Reperfusion Injury
Inflammatory modulations focusing on macrophage phenotype are promising candidates to promote better cardiac healing post myocardial ischemia‐reperfusion (MI/R) injury. However, the peak of monocyte/macrophage recruitment is later than the time when enhanced permeability and retention effect disappe...
Saved in:
Published in: | Advanced science 2021-08, Vol.8 (15), p.e2100787-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inflammatory modulations focusing on macrophage phenotype are promising candidates to promote better cardiac healing post myocardial ischemia‐reperfusion (MI/R) injury. However, the peak of monocyte/macrophage recruitment is later than the time when enhanced permeability and retention effect disappears, which greatly increases the difficulty of reprogramming macrophages through systemic administration. Meanwhile, the inability of nanomaterials to release their contents to specific intracellular locations through reasonable cellular internalization pathways is another obstacle to achieving macrophage reprogramming. Here, inspired by the increase in circulating platelet‐monocyte aggregates in patients′ post‐MI/R and the high efficiency of fusogenic liposomes to deliver contents to the cytoplasm of target cells, a platelet‐like fusogenic liposome (PLPs) is constructed. Under the coating of PLPs, mesoporous silica nanospheres with a payload of miR‐21, an anti‐inflammatory agent, can be specifically delivered to inflammatory monocytes in the blood circulation of MI/R induced mice. Then it directly enters the cytoplasm of monocytes through membrane fusion, thereby realizing the reparative reprogramming of the inflamed macrophages derived from it. In vivo administration of the resulting formula can effectively preserve the cardiac function of mice undergone MI/R. Minimal invasiveness and biological safety make this nano‐platform a promising approach of immunotherapy.
A platelet‐like fusogenic liposome is successfully developed. It mimics the interaction between platelets and monocytes/macrophages as a targeting strategy, and can deliver miR‐21 directly to the cytoplasm of monocytes/macrophages through membrane fusion, and then achieve macrophage reprogramming. In vivo administration of the resulting formula can effectively preserve the cardiac function of mice undergone MI/R. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202100787 |