Loading…
Multi-Stage Change Point Detection with Copula Conditional Distribution with PCA and Functional PCA
A global uncertainty environment, such as the COVID-19 pandemic, has affected the manufacturing industry severely in terms of supply and demand balancing. So, it is common that one stage statistical process control (SPC) chart affects the next-stage SPC chart. It is our research objective to conside...
Saved in:
Published in: | Mathematics (Basel) 2020-10, Vol.8 (10), p.1777 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-97beca945cebaf519bd780cb46c66225c53fe814b3f9e7bd69487a76f0fce7123 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-97beca945cebaf519bd780cb46c66225c53fe814b3f9e7bd69487a76f0fce7123 |
container_end_page | |
container_issue | 10 |
container_start_page | 1777 |
container_title | Mathematics (Basel) |
container_volume | 8 |
creator | Kim, Jong-Min Wang, Ning Liu, Yumin |
description | A global uncertainty environment, such as the COVID-19 pandemic, has affected the manufacturing industry severely in terms of supply and demand balancing. So, it is common that one stage statistical process control (SPC) chart affects the next-stage SPC chart. It is our research objective to consider a conditional case for the multi-stage multivariate change point detection (CPD) model for highly correlated multivariate data via copula conditional distributions with principal component analysis (PCA) and functional PCA (FPCA). First of all, we review the current available multivariate CPD models, which are the energy test-based control chart (ETCC) and the nonparametric multivariate change point model (NPMVCP). We extend the current available CPD models to the conditional multi-stage multivariate CPD model via copula conditional distributions with PCA for linear normal multivariate data and FPCA for nonlinear non-normal multivariate data. |
doi_str_mv | 10.3390/math8101777 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c89b2d8186144ee948c53907ac5dd22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c89b2d8186144ee948c53907ac5dd22</doaj_id><sourcerecordid>2548950635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-97beca945cebaf519bd780cb46c66225c53fe814b3f9e7bd69487a76f0fce7123</originalsourceid><addsrcrecordid>eNpNkUtLw0AUhYMoWGpX_oGAS4nO-7EsqdVCxYK6HiaTSTslzdTJBPHfO7WivZtzORy-y-Vk2TUEdxhLcL_TcSMggJzzs2yEEOIFT_75yX6ZTfp-C9JIiAWRo8w8D210xWvUa5uXG90lWXnXxXxmozXR-S7_dHGTl34_tDpJV7uDq9t85voYXDX8h1blNNddnc-HzvyGknWVXTS67e3kV8fZ-_zhrXwqli-Pi3K6LAxmJBaSV9ZoSaixlW4olFXNBTAVYYYxhKihuLECkgo30vKqZpIIrjlrQGMshwiPs8WRW3u9Vfvgdjp8Ka-d-jF8WCsdojOtVcwIWaFaQMEgIdYmVMJLwLWhdY0OrJsjax_8x2D7qLZ-COmhXiFKhKSAYZpSt8eUCb7vg23-rkKgDqWok1LwN5yDfsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548950635</pqid></control><display><type>article</type><title>Multi-Stage Change Point Detection with Copula Conditional Distribution with PCA and Functional PCA</title><source>ProQuest - Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Kim, Jong-Min ; Wang, Ning ; Liu, Yumin</creator><creatorcontrib>Kim, Jong-Min ; Wang, Ning ; Liu, Yumin</creatorcontrib><description>A global uncertainty environment, such as the COVID-19 pandemic, has affected the manufacturing industry severely in terms of supply and demand balancing. So, it is common that one stage statistical process control (SPC) chart affects the next-stage SPC chart. It is our research objective to consider a conditional case for the multi-stage multivariate change point detection (CPD) model for highly correlated multivariate data via copula conditional distributions with principal component analysis (PCA) and functional PCA (FPCA). First of all, we review the current available multivariate CPD models, which are the energy test-based control chart (ETCC) and the nonparametric multivariate change point model (NPMVCP). We extend the current available CPD models to the conditional multi-stage multivariate CPD model via copula conditional distributions with PCA for linear normal multivariate data and FPCA for nonlinear non-normal multivariate data.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math8101777</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Control charts ; copula ; Food science ; function principal component analysis ; Manufacturing ; Multivariate analysis ; multivariate change point detection ; Normal distribution ; principal component analysis ; Principal components analysis ; Quality control ; Random variables ; Statistical analysis ; Statistical methods ; Statistical process control ; Time series</subject><ispartof>Mathematics (Basel), 2020-10, Vol.8 (10), p.1777</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-97beca945cebaf519bd780cb46c66225c53fe814b3f9e7bd69487a76f0fce7123</citedby><cites>FETCH-LOGICAL-c364t-97beca945cebaf519bd780cb46c66225c53fe814b3f9e7bd69487a76f0fce7123</cites><orcidid>0000-0003-3821-2060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548950635/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548950635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,38515,43894,44589,74283,74997</link.rule.ids></links><search><creatorcontrib>Kim, Jong-Min</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Liu, Yumin</creatorcontrib><title>Multi-Stage Change Point Detection with Copula Conditional Distribution with PCA and Functional PCA</title><title>Mathematics (Basel)</title><description>A global uncertainty environment, such as the COVID-19 pandemic, has affected the manufacturing industry severely in terms of supply and demand balancing. So, it is common that one stage statistical process control (SPC) chart affects the next-stage SPC chart. It is our research objective to consider a conditional case for the multi-stage multivariate change point detection (CPD) model for highly correlated multivariate data via copula conditional distributions with principal component analysis (PCA) and functional PCA (FPCA). First of all, we review the current available multivariate CPD models, which are the energy test-based control chart (ETCC) and the nonparametric multivariate change point model (NPMVCP). We extend the current available CPD models to the conditional multi-stage multivariate CPD model via copula conditional distributions with PCA for linear normal multivariate data and FPCA for nonlinear non-normal multivariate data.</description><subject>Control charts</subject><subject>copula</subject><subject>Food science</subject><subject>function principal component analysis</subject><subject>Manufacturing</subject><subject>Multivariate analysis</subject><subject>multivariate change point detection</subject><subject>Normal distribution</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Quality control</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical process control</subject><subject>Time series</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLw0AUhYMoWGpX_oGAS4nO-7EsqdVCxYK6HiaTSTslzdTJBPHfO7WivZtzORy-y-Vk2TUEdxhLcL_TcSMggJzzs2yEEOIFT_75yX6ZTfp-C9JIiAWRo8w8D210xWvUa5uXG90lWXnXxXxmozXR-S7_dHGTl34_tDpJV7uDq9t85voYXDX8h1blNNddnc-HzvyGknWVXTS67e3kV8fZ-_zhrXwqli-Pi3K6LAxmJBaSV9ZoSaixlW4olFXNBTAVYYYxhKihuLECkgo30vKqZpIIrjlrQGMshwiPs8WRW3u9Vfvgdjp8Ka-d-jF8WCsdojOtVcwIWaFaQMEgIdYmVMJLwLWhdY0OrJsjax_8x2D7qLZ-COmhXiFKhKSAYZpSt8eUCb7vg23-rkKgDqWok1LwN5yDfsg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Kim, Jong-Min</creator><creator>Wang, Ning</creator><creator>Liu, Yumin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3821-2060</orcidid></search><sort><creationdate>20201001</creationdate><title>Multi-Stage Change Point Detection with Copula Conditional Distribution with PCA and Functional PCA</title><author>Kim, Jong-Min ; Wang, Ning ; Liu, Yumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-97beca945cebaf519bd780cb46c66225c53fe814b3f9e7bd69487a76f0fce7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control charts</topic><topic>copula</topic><topic>Food science</topic><topic>function principal component analysis</topic><topic>Manufacturing</topic><topic>Multivariate analysis</topic><topic>multivariate change point detection</topic><topic>Normal distribution</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Quality control</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical process control</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jong-Min</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Liu, Yumin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jong-Min</au><au>Wang, Ning</au><au>Liu, Yumin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Stage Change Point Detection with Copula Conditional Distribution with PCA and Functional PCA</atitle><jtitle>Mathematics (Basel)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>8</volume><issue>10</issue><spage>1777</spage><pages>1777-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>A global uncertainty environment, such as the COVID-19 pandemic, has affected the manufacturing industry severely in terms of supply and demand balancing. So, it is common that one stage statistical process control (SPC) chart affects the next-stage SPC chart. It is our research objective to consider a conditional case for the multi-stage multivariate change point detection (CPD) model for highly correlated multivariate data via copula conditional distributions with principal component analysis (PCA) and functional PCA (FPCA). First of all, we review the current available multivariate CPD models, which are the energy test-based control chart (ETCC) and the nonparametric multivariate change point model (NPMVCP). We extend the current available CPD models to the conditional multi-stage multivariate CPD model via copula conditional distributions with PCA for linear normal multivariate data and FPCA for nonlinear non-normal multivariate data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math8101777</doi><orcidid>https://orcid.org/0000-0003-3821-2060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2020-10, Vol.8 (10), p.1777 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6c89b2d8186144ee948c53907ac5dd22 |
source | ProQuest - Publicly Available Content Database; Coronavirus Research Database |
subjects | Control charts copula Food science function principal component analysis Manufacturing Multivariate analysis multivariate change point detection Normal distribution principal component analysis Principal components analysis Quality control Random variables Statistical analysis Statistical methods Statistical process control Time series |
title | Multi-Stage Change Point Detection with Copula Conditional Distribution with PCA and Functional PCA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Stage%20Change%20Point%20Detection%20with%20Copula%20Conditional%20Distribution%20with%20PCA%20and%20Functional%20PCA&rft.jtitle=Mathematics%20(Basel)&rft.au=Kim,%20Jong-Min&rft.date=2020-10-01&rft.volume=8&rft.issue=10&rft.spage=1777&rft.pages=1777-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math8101777&rft_dat=%3Cproquest_doaj_%3E2548950635%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-97beca945cebaf519bd780cb46c66225c53fe814b3f9e7bd69487a76f0fce7123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548950635&rft_id=info:pmid/&rfr_iscdi=true |