Loading…

Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica

is one of the most important crops worldwide. In vitro culture is an alternative for achieving regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synch...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) 2021-11, Vol.10 (12), p.2607
Main Authors: Quintana-Escobar, Ana O, Méndez-Hernández, Hugo A, Galaz-Ávalos, Rosa M, Elizalde-Contreras, José M, Reyes-Soria, Francisco A, Aguilar-Hernández, Victor, Ruíz-May, Eliel, Loyola-Vargas, Víctor M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3
cites cdi_FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3
container_end_page
container_issue 12
container_start_page 2607
container_title Plants (Basel)
container_volume 10
creator Quintana-Escobar, Ana O
Méndez-Hernández, Hugo A
Galaz-Ávalos, Rosa M
Elizalde-Contreras, José M
Reyes-Soria, Francisco A
Aguilar-Hernández, Victor
Ruíz-May, Eliel
Loyola-Vargas, Víctor M
description is one of the most important crops worldwide. In vitro culture is an alternative for achieving regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to : plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.
doi_str_mv 10.3390/plants10122607
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c9d7444700047aabb3dd1cb42f01f96</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c9d7444700047aabb3dd1cb42f01f96</doaj_id><sourcerecordid>2615110081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3</originalsourceid><addsrcrecordid>eNpdUk1vEzEQXSEQrUqvHJElLlxSbK_XHxekKAUaqRIIAldr1msnjjZ2sL0I_gM_Goe0VYNlydbzmzfjN9M0Lwm-aluF3-5HCCUTTCjlWDxpziml7UwIJp4-up81lzlvcV2ybsKfN2ctU5xgIc-bP9feOZtsMDYjH1DZWDTvpzBARVB0aD79qvBN3NmYC2Sf0ecUi_Uho6_Tem1zQauN9QktbCgJRvQljlXKxYSWAX33JUW08jlPFt2nKh6Kj-GQbhErBAgS9N7Ai-aZgzHby7vzovn24f1qcTO7_fRxuZjfzgyTrMwYUEqUohKbjhNhGQNQuHedFZwBocpA12NGqXSOSuMwABWtsq7rek6Zay-a5VF3iLDV--R3kH7rCF7_A2Jaa0jFm9FqbtQgGGOi2scEQN-3w0BMz6jDxCletd4dtfZTv7ODObpwInr6EvxGr-NPLQWWUqoq8OZOIMUfU_VT73w2dqy9tXHKmnLSEXLoXKW-_o-6jVMK1aoDi8rqCD9UdHVkmRRzTtY9FEOwPsyNPp2bGvDq8Rce6PdT0v4Ftw_APg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612828066</pqid></control><display><type>article</type><title>Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Quintana-Escobar, Ana O ; Méndez-Hernández, Hugo A ; Galaz-Ávalos, Rosa M ; Elizalde-Contreras, José M ; Reyes-Soria, Francisco A ; Aguilar-Hernández, Victor ; Ruíz-May, Eliel ; Loyola-Vargas, Víctor M</creator><creatorcontrib>Quintana-Escobar, Ana O ; Méndez-Hernández, Hugo A ; Galaz-Ávalos, Rosa M ; Elizalde-Contreras, José M ; Reyes-Soria, Francisco A ; Aguilar-Hernández, Victor ; Ruíz-May, Eliel ; Loyola-Vargas, Víctor M</creatorcontrib><description>is one of the most important crops worldwide. In vitro culture is an alternative for achieving regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to : plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants10122607</identifier><identifier>PMID: 34961078</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetic acid ; ATP-binding protein ; Auxins ; Biological materials ; Butyric acid ; Callus ; Cell culture ; Cell differentiation ; Cell division ; cellular differentiation ; Coffea arabica ; Coffee ; Conjugation ; Differentiation (biology) ; Genome editing ; Genomes ; Homeostasis ; Indole-3-butyric acid ; Indoleacetic acid ; Kinases ; Leucine ; mass spectrometry analysis ; Metabolism ; Metabolites ; Oxidation ; Peptides ; plant tissue culture ; Propagation ; Proteins ; Proteomics ; quantitative proteomics ; Regeneration ; Suspension culture ; tandem mass tag</subject><ispartof>Plants (Basel), 2021-11, Vol.10 (12), p.2607</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3</citedby><cites>FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3</cites><orcidid>0000-0001-6152-5060 ; 0000-0001-5386-4265 ; 0000-0003-3686-134X ; 0000-0003-1416-4973 ; 0000-0001-7308-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612828066/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612828066?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34961078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quintana-Escobar, Ana O</creatorcontrib><creatorcontrib>Méndez-Hernández, Hugo A</creatorcontrib><creatorcontrib>Galaz-Ávalos, Rosa M</creatorcontrib><creatorcontrib>Elizalde-Contreras, José M</creatorcontrib><creatorcontrib>Reyes-Soria, Francisco A</creatorcontrib><creatorcontrib>Aguilar-Hernández, Victor</creatorcontrib><creatorcontrib>Ruíz-May, Eliel</creatorcontrib><creatorcontrib>Loyola-Vargas, Víctor M</creatorcontrib><title>Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica</title><title>Plants (Basel)</title><addtitle>Plants (Basel)</addtitle><description>is one of the most important crops worldwide. In vitro culture is an alternative for achieving regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to : plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.</description><subject>Acetic acid</subject><subject>ATP-binding protein</subject><subject>Auxins</subject><subject>Biological materials</subject><subject>Butyric acid</subject><subject>Callus</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell division</subject><subject>cellular differentiation</subject><subject>Coffea arabica</subject><subject>Coffee</subject><subject>Conjugation</subject><subject>Differentiation (biology)</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Homeostasis</subject><subject>Indole-3-butyric acid</subject><subject>Indoleacetic acid</subject><subject>Kinases</subject><subject>Leucine</subject><subject>mass spectrometry analysis</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Oxidation</subject><subject>Peptides</subject><subject>plant tissue culture</subject><subject>Propagation</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>quantitative proteomics</subject><subject>Regeneration</subject><subject>Suspension culture</subject><subject>tandem mass tag</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1vEzEQXSEQrUqvHJElLlxSbK_XHxekKAUaqRIIAldr1msnjjZ2sL0I_gM_Goe0VYNlydbzmzfjN9M0Lwm-aluF3-5HCCUTTCjlWDxpziml7UwIJp4-up81lzlvcV2ybsKfN2ctU5xgIc-bP9feOZtsMDYjH1DZWDTvpzBARVB0aD79qvBN3NmYC2Sf0ecUi_Uho6_Tem1zQauN9QktbCgJRvQljlXKxYSWAX33JUW08jlPFt2nKh6Kj-GQbhErBAgS9N7Ai-aZgzHby7vzovn24f1qcTO7_fRxuZjfzgyTrMwYUEqUohKbjhNhGQNQuHedFZwBocpA12NGqXSOSuMwABWtsq7rek6Zay-a5VF3iLDV--R3kH7rCF7_A2Jaa0jFm9FqbtQgGGOi2scEQN-3w0BMz6jDxCletd4dtfZTv7ODObpwInr6EvxGr-NPLQWWUqoq8OZOIMUfU_VT73w2dqy9tXHKmnLSEXLoXKW-_o-6jVMK1aoDi8rqCD9UdHVkmRRzTtY9FEOwPsyNPp2bGvDq8Rce6PdT0v4Ftw_APg</recordid><startdate>20211127</startdate><enddate>20211127</enddate><creator>Quintana-Escobar, Ana O</creator><creator>Méndez-Hernández, Hugo A</creator><creator>Galaz-Ávalos, Rosa M</creator><creator>Elizalde-Contreras, José M</creator><creator>Reyes-Soria, Francisco A</creator><creator>Aguilar-Hernández, Victor</creator><creator>Ruíz-May, Eliel</creator><creator>Loyola-Vargas, Víctor M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6152-5060</orcidid><orcidid>https://orcid.org/0000-0001-5386-4265</orcidid><orcidid>https://orcid.org/0000-0003-3686-134X</orcidid><orcidid>https://orcid.org/0000-0003-1416-4973</orcidid><orcidid>https://orcid.org/0000-0001-7308-4047</orcidid></search><sort><creationdate>20211127</creationdate><title>Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica</title><author>Quintana-Escobar, Ana O ; Méndez-Hernández, Hugo A ; Galaz-Ávalos, Rosa M ; Elizalde-Contreras, José M ; Reyes-Soria, Francisco A ; Aguilar-Hernández, Victor ; Ruíz-May, Eliel ; Loyola-Vargas, Víctor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetic acid</topic><topic>ATP-binding protein</topic><topic>Auxins</topic><topic>Biological materials</topic><topic>Butyric acid</topic><topic>Callus</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell division</topic><topic>cellular differentiation</topic><topic>Coffea arabica</topic><topic>Coffee</topic><topic>Conjugation</topic><topic>Differentiation (biology)</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Homeostasis</topic><topic>Indole-3-butyric acid</topic><topic>Indoleacetic acid</topic><topic>Kinases</topic><topic>Leucine</topic><topic>mass spectrometry analysis</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Oxidation</topic><topic>Peptides</topic><topic>plant tissue culture</topic><topic>Propagation</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>quantitative proteomics</topic><topic>Regeneration</topic><topic>Suspension culture</topic><topic>tandem mass tag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quintana-Escobar, Ana O</creatorcontrib><creatorcontrib>Méndez-Hernández, Hugo A</creatorcontrib><creatorcontrib>Galaz-Ávalos, Rosa M</creatorcontrib><creatorcontrib>Elizalde-Contreras, José M</creatorcontrib><creatorcontrib>Reyes-Soria, Francisco A</creatorcontrib><creatorcontrib>Aguilar-Hernández, Victor</creatorcontrib><creatorcontrib>Ruíz-May, Eliel</creatorcontrib><creatorcontrib>Loyola-Vargas, Víctor M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quintana-Escobar, Ana O</au><au>Méndez-Hernández, Hugo A</au><au>Galaz-Ávalos, Rosa M</au><au>Elizalde-Contreras, José M</au><au>Reyes-Soria, Francisco A</au><au>Aguilar-Hernández, Victor</au><au>Ruíz-May, Eliel</au><au>Loyola-Vargas, Víctor M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica</atitle><jtitle>Plants (Basel)</jtitle><addtitle>Plants (Basel)</addtitle><date>2021-11-27</date><risdate>2021</risdate><volume>10</volume><issue>12</issue><spage>2607</spage><pages>2607-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>is one of the most important crops worldwide. In vitro culture is an alternative for achieving regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to : plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34961078</pmid><doi>10.3390/plants10122607</doi><orcidid>https://orcid.org/0000-0001-6152-5060</orcidid><orcidid>https://orcid.org/0000-0001-5386-4265</orcidid><orcidid>https://orcid.org/0000-0003-3686-134X</orcidid><orcidid>https://orcid.org/0000-0003-1416-4973</orcidid><orcidid>https://orcid.org/0000-0001-7308-4047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2223-7747
ispartof Plants (Basel), 2021-11, Vol.10 (12), p.2607
issn 2223-7747
2223-7747
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6c9d7444700047aabb3dd1cb42f01f96
source Publicly Available Content Database; PubMed Central
subjects Acetic acid
ATP-binding protein
Auxins
Biological materials
Butyric acid
Callus
Cell culture
Cell differentiation
Cell division
cellular differentiation
Coffea arabica
Coffee
Conjugation
Differentiation (biology)
Genome editing
Genomes
Homeostasis
Indole-3-butyric acid
Indoleacetic acid
Kinases
Leucine
mass spectrometry analysis
Metabolism
Metabolites
Oxidation
Peptides
plant tissue culture
Propagation
Proteins
Proteomics
quantitative proteomics
Regeneration
Suspension culture
tandem mass tag
title Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20in%20the%20Abundance%20of%20Auxin%20Homeostasis%20Proteins%20Suggest%20Their%20Central%20Roles%20for%20In%20Vitro%20Tissue%20Differentiation%20in%20Coffea%20arabica&rft.jtitle=Plants%20(Basel)&rft.au=Quintana-Escobar,%20Ana%20O&rft.date=2021-11-27&rft.volume=10&rft.issue=12&rft.spage=2607&rft.pages=2607-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants10122607&rft_dat=%3Cproquest_doaj_%3E2615110081%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612828066&rft_id=info:pmid/34961078&rfr_iscdi=true