Loading…
Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica
is one of the most important crops worldwide. In vitro culture is an alternative for achieving regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synch...
Saved in:
Published in: | Plants (Basel) 2021-11, Vol.10 (12), p.2607 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3 |
container_end_page | |
container_issue | 12 |
container_start_page | 2607 |
container_title | Plants (Basel) |
container_volume | 10 |
creator | Quintana-Escobar, Ana O Méndez-Hernández, Hugo A Galaz-Ávalos, Rosa M Elizalde-Contreras, José M Reyes-Soria, Francisco A Aguilar-Hernández, Victor Ruíz-May, Eliel Loyola-Vargas, Víctor M |
description | is one of the most important crops worldwide. In vitro culture is an alternative for achieving
regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to
: plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process. |
doi_str_mv | 10.3390/plants10122607 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6c9d7444700047aabb3dd1cb42f01f96</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c9d7444700047aabb3dd1cb42f01f96</doaj_id><sourcerecordid>2615110081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3</originalsourceid><addsrcrecordid>eNpdUk1vEzEQXSEQrUqvHJElLlxSbK_XHxekKAUaqRIIAldr1msnjjZ2sL0I_gM_Goe0VYNlydbzmzfjN9M0Lwm-aluF3-5HCCUTTCjlWDxpziml7UwIJp4-up81lzlvcV2ybsKfN2ctU5xgIc-bP9feOZtsMDYjH1DZWDTvpzBARVB0aD79qvBN3NmYC2Sf0ecUi_Uho6_Tem1zQauN9QktbCgJRvQljlXKxYSWAX33JUW08jlPFt2nKh6Kj-GQbhErBAgS9N7Ai-aZgzHby7vzovn24f1qcTO7_fRxuZjfzgyTrMwYUEqUohKbjhNhGQNQuHedFZwBocpA12NGqXSOSuMwABWtsq7rek6Zay-a5VF3iLDV--R3kH7rCF7_A2Jaa0jFm9FqbtQgGGOi2scEQN-3w0BMz6jDxCletd4dtfZTv7ODObpwInr6EvxGr-NPLQWWUqoq8OZOIMUfU_VT73w2dqy9tXHKmnLSEXLoXKW-_o-6jVMK1aoDi8rqCD9UdHVkmRRzTtY9FEOwPsyNPp2bGvDq8Rce6PdT0v4Ftw_APg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612828066</pqid></control><display><type>article</type><title>Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Quintana-Escobar, Ana O ; Méndez-Hernández, Hugo A ; Galaz-Ávalos, Rosa M ; Elizalde-Contreras, José M ; Reyes-Soria, Francisco A ; Aguilar-Hernández, Victor ; Ruíz-May, Eliel ; Loyola-Vargas, Víctor M</creator><creatorcontrib>Quintana-Escobar, Ana O ; Méndez-Hernández, Hugo A ; Galaz-Ávalos, Rosa M ; Elizalde-Contreras, José M ; Reyes-Soria, Francisco A ; Aguilar-Hernández, Victor ; Ruíz-May, Eliel ; Loyola-Vargas, Víctor M</creatorcontrib><description>is one of the most important crops worldwide. In vitro culture is an alternative for achieving
regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to
: plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants10122607</identifier><identifier>PMID: 34961078</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetic acid ; ATP-binding protein ; Auxins ; Biological materials ; Butyric acid ; Callus ; Cell culture ; Cell differentiation ; Cell division ; cellular differentiation ; Coffea arabica ; Coffee ; Conjugation ; Differentiation (biology) ; Genome editing ; Genomes ; Homeostasis ; Indole-3-butyric acid ; Indoleacetic acid ; Kinases ; Leucine ; mass spectrometry analysis ; Metabolism ; Metabolites ; Oxidation ; Peptides ; plant tissue culture ; Propagation ; Proteins ; Proteomics ; quantitative proteomics ; Regeneration ; Suspension culture ; tandem mass tag</subject><ispartof>Plants (Basel), 2021-11, Vol.10 (12), p.2607</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3</citedby><cites>FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3</cites><orcidid>0000-0001-6152-5060 ; 0000-0001-5386-4265 ; 0000-0003-3686-134X ; 0000-0003-1416-4973 ; 0000-0001-7308-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612828066/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612828066?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34961078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quintana-Escobar, Ana O</creatorcontrib><creatorcontrib>Méndez-Hernández, Hugo A</creatorcontrib><creatorcontrib>Galaz-Ávalos, Rosa M</creatorcontrib><creatorcontrib>Elizalde-Contreras, José M</creatorcontrib><creatorcontrib>Reyes-Soria, Francisco A</creatorcontrib><creatorcontrib>Aguilar-Hernández, Victor</creatorcontrib><creatorcontrib>Ruíz-May, Eliel</creatorcontrib><creatorcontrib>Loyola-Vargas, Víctor M</creatorcontrib><title>Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica</title><title>Plants (Basel)</title><addtitle>Plants (Basel)</addtitle><description>is one of the most important crops worldwide. In vitro culture is an alternative for achieving
regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to
: plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.</description><subject>Acetic acid</subject><subject>ATP-binding protein</subject><subject>Auxins</subject><subject>Biological materials</subject><subject>Butyric acid</subject><subject>Callus</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell division</subject><subject>cellular differentiation</subject><subject>Coffea arabica</subject><subject>Coffee</subject><subject>Conjugation</subject><subject>Differentiation (biology)</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Homeostasis</subject><subject>Indole-3-butyric acid</subject><subject>Indoleacetic acid</subject><subject>Kinases</subject><subject>Leucine</subject><subject>mass spectrometry analysis</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Oxidation</subject><subject>Peptides</subject><subject>plant tissue culture</subject><subject>Propagation</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>quantitative proteomics</subject><subject>Regeneration</subject><subject>Suspension culture</subject><subject>tandem mass tag</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1vEzEQXSEQrUqvHJElLlxSbK_XHxekKAUaqRIIAldr1msnjjZ2sL0I_gM_Goe0VYNlydbzmzfjN9M0Lwm-aluF3-5HCCUTTCjlWDxpziml7UwIJp4-up81lzlvcV2ybsKfN2ctU5xgIc-bP9feOZtsMDYjH1DZWDTvpzBARVB0aD79qvBN3NmYC2Sf0ecUi_Uho6_Tem1zQauN9QktbCgJRvQljlXKxYSWAX33JUW08jlPFt2nKh6Kj-GQbhErBAgS9N7Ai-aZgzHby7vzovn24f1qcTO7_fRxuZjfzgyTrMwYUEqUohKbjhNhGQNQuHedFZwBocpA12NGqXSOSuMwABWtsq7rek6Zay-a5VF3iLDV--R3kH7rCF7_A2Jaa0jFm9FqbtQgGGOi2scEQN-3w0BMz6jDxCletd4dtfZTv7ODObpwInr6EvxGr-NPLQWWUqoq8OZOIMUfU_VT73w2dqy9tXHKmnLSEXLoXKW-_o-6jVMK1aoDi8rqCD9UdHVkmRRzTtY9FEOwPsyNPp2bGvDq8Rce6PdT0v4Ftw_APg</recordid><startdate>20211127</startdate><enddate>20211127</enddate><creator>Quintana-Escobar, Ana O</creator><creator>Méndez-Hernández, Hugo A</creator><creator>Galaz-Ávalos, Rosa M</creator><creator>Elizalde-Contreras, José M</creator><creator>Reyes-Soria, Francisco A</creator><creator>Aguilar-Hernández, Victor</creator><creator>Ruíz-May, Eliel</creator><creator>Loyola-Vargas, Víctor M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6152-5060</orcidid><orcidid>https://orcid.org/0000-0001-5386-4265</orcidid><orcidid>https://orcid.org/0000-0003-3686-134X</orcidid><orcidid>https://orcid.org/0000-0003-1416-4973</orcidid><orcidid>https://orcid.org/0000-0001-7308-4047</orcidid></search><sort><creationdate>20211127</creationdate><title>Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica</title><author>Quintana-Escobar, Ana O ; Méndez-Hernández, Hugo A ; Galaz-Ávalos, Rosa M ; Elizalde-Contreras, José M ; Reyes-Soria, Francisco A ; Aguilar-Hernández, Victor ; Ruíz-May, Eliel ; Loyola-Vargas, Víctor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetic acid</topic><topic>ATP-binding protein</topic><topic>Auxins</topic><topic>Biological materials</topic><topic>Butyric acid</topic><topic>Callus</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell division</topic><topic>cellular differentiation</topic><topic>Coffea arabica</topic><topic>Coffee</topic><topic>Conjugation</topic><topic>Differentiation (biology)</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Homeostasis</topic><topic>Indole-3-butyric acid</topic><topic>Indoleacetic acid</topic><topic>Kinases</topic><topic>Leucine</topic><topic>mass spectrometry analysis</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Oxidation</topic><topic>Peptides</topic><topic>plant tissue culture</topic><topic>Propagation</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>quantitative proteomics</topic><topic>Regeneration</topic><topic>Suspension culture</topic><topic>tandem mass tag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quintana-Escobar, Ana O</creatorcontrib><creatorcontrib>Méndez-Hernández, Hugo A</creatorcontrib><creatorcontrib>Galaz-Ávalos, Rosa M</creatorcontrib><creatorcontrib>Elizalde-Contreras, José M</creatorcontrib><creatorcontrib>Reyes-Soria, Francisco A</creatorcontrib><creatorcontrib>Aguilar-Hernández, Victor</creatorcontrib><creatorcontrib>Ruíz-May, Eliel</creatorcontrib><creatorcontrib>Loyola-Vargas, Víctor M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quintana-Escobar, Ana O</au><au>Méndez-Hernández, Hugo A</au><au>Galaz-Ávalos, Rosa M</au><au>Elizalde-Contreras, José M</au><au>Reyes-Soria, Francisco A</au><au>Aguilar-Hernández, Victor</au><au>Ruíz-May, Eliel</au><au>Loyola-Vargas, Víctor M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica</atitle><jtitle>Plants (Basel)</jtitle><addtitle>Plants (Basel)</addtitle><date>2021-11-27</date><risdate>2021</risdate><volume>10</volume><issue>12</issue><spage>2607</spage><pages>2607-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>is one of the most important crops worldwide. In vitro culture is an alternative for achieving
regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to
: plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34961078</pmid><doi>10.3390/plants10122607</doi><orcidid>https://orcid.org/0000-0001-6152-5060</orcidid><orcidid>https://orcid.org/0000-0001-5386-4265</orcidid><orcidid>https://orcid.org/0000-0003-3686-134X</orcidid><orcidid>https://orcid.org/0000-0003-1416-4973</orcidid><orcidid>https://orcid.org/0000-0001-7308-4047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2223-7747 |
ispartof | Plants (Basel), 2021-11, Vol.10 (12), p.2607 |
issn | 2223-7747 2223-7747 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6c9d7444700047aabb3dd1cb42f01f96 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acetic acid ATP-binding protein Auxins Biological materials Butyric acid Callus Cell culture Cell differentiation Cell division cellular differentiation Coffea arabica Coffee Conjugation Differentiation (biology) Genome editing Genomes Homeostasis Indole-3-butyric acid Indoleacetic acid Kinases Leucine mass spectrometry analysis Metabolism Metabolites Oxidation Peptides plant tissue culture Propagation Proteins Proteomics quantitative proteomics Regeneration Suspension culture tandem mass tag |
title | Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20in%20the%20Abundance%20of%20Auxin%20Homeostasis%20Proteins%20Suggest%20Their%20Central%20Roles%20for%20In%20Vitro%20Tissue%20Differentiation%20in%20Coffea%20arabica&rft.jtitle=Plants%20(Basel)&rft.au=Quintana-Escobar,%20Ana%20O&rft.date=2021-11-27&rft.volume=10&rft.issue=12&rft.spage=2607&rft.pages=2607-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants10122607&rft_dat=%3Cproquest_doaj_%3E2615110081%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-4a22199280c5617e44aa90bf5e764a129ca5b04228ff28cf0aa2739ef55b624f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612828066&rft_id=info:pmid/34961078&rfr_iscdi=true |