Loading…

Network Dismantling on Signed Network by Evolutionary Deep Reinforcement Learning

Network dismantling is an important question that has attracted much attention from many different research areas, including the disruption of criminal organizations, the maintenance of stability in sensor networks, and so on. However, almost all current algorithms focus on unsigned networks, and fe...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.8026
Main Authors: Ou, Yuxuan, Xiong, Fujing, Zhang, Hairong, Li, Huijia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Network dismantling is an important question that has attracted much attention from many different research areas, including the disruption of criminal organizations, the maintenance of stability in sensor networks, and so on. However, almost all current algorithms focus on unsigned networks, and few studies explore the problem of signed network dismantling due to its complexity and lack of data. Importantly, there is a lack of an effective quality function to assess the performance of signed network dismantling, which seriously restricts its deeper applications. To address these questions, in this paper, we design a new objective function and further propose an effective algorithm named as DSEDR, which aims to search for the best dismantling strategy based on evolutionary deep reinforcement learning. Especially, since the evolutionary computation is able to solve global optimization and the deep reinforcement learning can speed up the network computation, we integrate it for the signed network dismantling efficiently. To verify the performance of DSEDR, we apply it to a series of representative artificial and real network data and compare the efficiency with some popular baseline methods. Based on the experimental results, DSEDR has superior performance to all other methods in both efficiency and interpretability.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24248026