Loading…

Bagging treatment influences production of C6 aldehydes and biosynthesis-related gene expression in peach fruit skin

Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were used to study the effe...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2014-08, Vol.19 (9), p.13461-13472
Main Authors: Shen, Ji-Yuan, Wu, Lei, Liu, Hong-Ru, Zhang, Bo, Yin, Xue-Ren, Ge, Yi-Qiang, Chen, Kun-Song
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were used to study the effects of bagging treatment on the formation of C6 aldehydes in peach fruit (Prunus persica L. Batsch, cv. Yulu) over two succeeding seasons. Higher concentrations of n-hexanal and (E)-2-hexenal, which are characteristic aroma volatiles of peach fruit, were induced by bagging treatment. After bagging treatment, peach fruit had significantly higher LOX and HPL enzyme activities, accompanying increased contents of C6 aldehydes. The gene expression data obtained through real-time PCR showed that no consistent significant differences in transcript levels of LOX genes were observed over the two seasons, but significantly up-regulated expression was found for PpHPL1 after bagging treatment In addition, bagging-treated fruit produced more (E)-2-hexenal and had higher expression levels of PpHPL1 during postharvest ripening at room temperature. The regulatory role of the LOX-HPL pathway on the biosynthesis of n-hexanal and (E)-2-hexenal in response to bagging treatment during peach fruit development is discussed in the text.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules190913461