Loading…

High repetition rate seeded free electron laser with an optical klystron in high-gain harmonic generation

Many high-gain free electron lasers worldwide are planning to incorporate seeding setups into their day-to-day operation. These techniques provide both longitudinal and transverse coherence and extended control of the output free electron laser radiation spectral properties. However, the output wave...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. Accelerators and beams 2021-12, Vol.24 (12), p.120701, Article 120701
Main Authors: Paraskaki, Georgia, Allaria, Enrico, Schneidmiller, Evgeny, Hillert, Wolfgang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many high-gain free electron lasers worldwide are planning to incorporate seeding setups into their day-to-day operation. These techniques provide both longitudinal and transverse coherence and extended control of the output free electron laser radiation spectral properties. However, the output wavelength and repetition rate strongly depend on the properties of the seed laser system. With the laser peak power required for successful seeded operation, it is currently not possible to increase their repetition rate to an extent that it matches the electron bunch repetition rate of superconducting accelerators. Here, we investigate the advantages of a modification of standard seeding setups, by combining the seeding with the so-called optical klystron. With this new seeding setup, it is possible to decrease the seed laser power requirements and therefore, seed laser systems can increase their repetition rate at the same wavelength. We show simulation results in a high-gain harmonic generation (HGHG) setup for a range of harmonics (8th to 15th) and we verify the reduction of seed laser power required with an Optical Klystron HGHG scheme. Finally, we comment on the stability of the proposed setup to jitter sources and to shot-to-shot fluctuations and compare to the standard HGHG scheme.
ISSN:2469-9888
2469-9888
DOI:10.1103/PhysRevAccelBeams.24.120701