Loading…

A global stratospheric bromine monoxide climatology based on the BASCOE chemical transport model

A new climatology of stratospheric BrO profiles based on a parameterization using dynamical and chemical indicators has been developed, with the aim to apply it to the retrieval of tropospheric BrO columns from space nadir measurements. The adopted parameterization is based on three years of output...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2009-01, Vol.9 (3), p.831-848
Main Authors: Theys, N., Van Roozendael, M., Errera, Q., Hendrick, F., Daerden, F., Chabrillat, S., Dorf, M., Pfeilsticker, K., Rozanov, A., Lotz, W., Burrows, J. P., Lambert, J.-C., Goutail, F., Roscoe, H. K., De Mazière, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new climatology of stratospheric BrO profiles based on a parameterization using dynamical and chemical indicators has been developed, with the aim to apply it to the retrieval of tropospheric BrO columns from space nadir measurements. The adopted parameterization is based on three years of output data from the 3-D chemistry transport model BASCOE. The impact of the atmospheric dynamics on the stratospheric BrO distribution is treated by means of Bry/ozone correlations built from 3-D-CTM model results, while photochemical effects are taken into account using stratospheric NO2 columns as an indicator of the BrO/Bry ratio. The model simulations have been optimized for bromine chemistry and budget, and validated through comparisons using an extensive data set of ground-based, balloon-borne and satellite limb (SCIAMACHY) stratospheric BrO observations.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-9-831-2009